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Links to Related Documents and Materials

Resource Description

Executive Summary Short form overview of major project outputs,
successes, challenges, and lessons learned. Intended
to be accessible by a broad audience.

AidData Project Page Dedicated web page on aiddata.org which serves as a
centralized access point for project resources and
materials.

GitHub Repository Public repository where all data, code, and technical
usage documentation is available.

Local Context Report CDD-Ghana combined an in-depth literature review and
local knowledge to generate a report focusing on
gender differences and similarities related to asset
acquisition, control, and decision making in Ghana.

https://www.aiddata.org/publications/equitable-ai-report-2023
https://www.aiddata.org/projects/equitable-ai
https://github.com/aiddata/accessible-poverty-estimates
https://geo.aiddata.org/assets/CDD_Ghana_Gender_Assets_Context_Report.pdf
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Acronyms

Acronym Definition

AI Artificial Intelligence

CDD-Ghana Center for Democratic Development Ghana

CNN Convolutional Neural Network

CV Cross Validation

DHS Demographic and Health Surveys

HoH Head of household

IWI International wealth index

ML Machine Learning

NTL Nighttime lights

OSM OpenStreetMap

PCA Principal component analysis

RF Random forest

RFR Random forest regression

RMSE Root mean square error

VIIRS Visible Infrared Imaging Radiometer Suite

WI Wealth index



Introduction

Over the past year, AidData, in partnership with the Center for Democratic Development
Ghana (CDD-Ghana), has worked to evaluate the potential of gender bias in wealth
estimates generated using artificial intelligence (AI), geospatial data, and USAID’s
Demographic and Health Surveys (DHS) data. The project leverages AidData’s expertise in
AI, geospatial data, household surveys, and CDD-Ghana’s knowledge of the local context
and environments to produce a novel public good that will elevate equitability discussions
surrounding the growing use of AI in development.

Funding for the project was awarded through USAID’s Equitable AI Challenge -
implemented through DAI’s Digital Frontiers - which was designed to fund approaches that
will increase the accountability and transparency of AI systems used in global development
contexts. The project builds upon AidData’s broader research initiative on gender equity in
development and ongoing AI applications, as well as collaborations between AidData and
CDD-Ghana.

Activities spanned two major fronts, leveraging the expertise and resources of both AidData
and CDD-Ghana. The first, led by AidData, focused primarily on technical development and
analysis of the machine learning models used to estimate wealth and creating a practical
and extensible methodology for evaluating potential gender bias. The second, led by
CDD-Ghana, incorporated local understanding and engagement to inform development of
the machine learning models, and engage with in-country stakeholders and organizations.

The lack of previous research into the role of gender in AI based wealth estimates, combined
with unique challenges of the data used, meant that the scope of work was both ambitious
and faced numerous uncertainties. Many established approaches for considering gender
bias in machine learning training data, or in trained models themselves, could not be directly
applied. In addition, incorporating expert knowledge of local conditions was clearly critical
from the onset for both producing accurate models and providing opportunities to engage
with the population the models are based on and who could be impacted by use of the
models.

Our efforts to address these challenges and maintain the standards of a truly equitable AI
project ultimately produced valuable insight into the influence of gender on AI based wealth
estimates and how gender bias can be evaluated and factored into future work. Additionally,
the engagement and interaction with local organizations brought together a diverse set of
professionals in Ghana who are linked by the significance of Equitable AI to their work,
despite being in industries and sectors that may not typically engage with one another.

By sharing these insights and making our work publicly available and readily accessible -
including data, code, documentation, and reports - we aim to encourage and facilitate other
researchers and analysts to incorporate more equitable AI based wealth estimates into their
work. In this executive summary, we will provide a brief overview of the activities
implemented, what we learned, and implications for future work.



In this report, we will first explore the background of related research focused on the use of
AI and other methods for estimating wealth, as well as available literature on linkages
between assets and gender in developing countries. The Methodology section provides
details on the datasets used, the design of the AI models implemented, as well as
approaches for household gender classification and producing alternative wealth indices.
The Results section breaks down the findings of our analysis into key performance areas
which include multiple aspects of model performance along with a comparison of wealth
distribution based on alternative wealth indices. In the Discussion, we consider the
limitations of the current approach and data, and possible directions for future work. Finally,
in the Appendices we provide additional details on specific elements of the analysis, as well
as an overview of other elements of the project including in-country engagement, and
documentation on the technical materials (data and code) made available for public use.



Background

The significance of outcome measures to monitor development indicators for research and
policy applications has been well established in recent literature (Avtar et al., 2020, Allen et
al., 2019, Burke et al., 2021). The limited spatial and temporal coverage available from
traditional data collection methods such as household surveys can inhibit identifying and
addressing critical trends in poverty, health, and other sectors at subnational levels in a
timely manner. Over the past two decades, remotely sensed geospatial data such as
nighttime lights has been used to fill in existing gaps for metrics including population,
poverty, and GDP (Pozzi et al., 2002, Ebener et al., 2005, Henderson et al., 2012, Bennett
and Smith, 2017). More recently, researchers have leveraged machine learning methods,
satellite imagery, and other geospatial data to produce estimates of development indicators
and outcomes including household wealth, infrastructure quality, and crop yield (Jean et al.,
2016, Oshri et al., 2018, Lobell et al., 2020).

A subset of machine learning algorithms, known as deep learning, have shown particular
promise when used to estimate poverty - primarily based on household assets measured by
the Demographic and Health Surveys (DHS) (Burke et al., 2021, Lee and Braithwaite, 2020).
While the use of deep learning approaches such as convolutional neural networks (CNNs)
have been shown to produce better estimates of poverty than previously established
methods leveraging nighttime lights as a proxy, the uptake of deep learning methods can be
limited by computational requirements & financial costs, technical knowledge, data
accessibility, time to produce, and the interpretability of results (Justus et al., 2019,
Christopher Yeh et al., 2021, Lin Htet et al., 2021, Ayush et al., 2020). Recent literature has
explored the use of OpenStreetMap (OSM) data paired with a machine learning approach
known as random forests (RFs) as an alternative (Tingzon et al., 2019, Lin Htet et al., 2021).

Tingzon et al. (2019) showed that volunteer geographic information (VGI) from OSM on
features in the Philippines - including building footprints, road networks, points of interest,
and more - could be used alongside nighttime lights data in a random forest regression
(RFR) to produce estimates of poverty comparable to deep learning approaches (R2=0.63).
Lin Htet et al. (2021) applied a similar approach using OSM features and nighttime lights to
estimate poverty in Myanmar with random forests and other machine learning algorithms
(RF R2=0.71). Both studies represented poverty using the DHS Wealth Index (derived from
household assets), and incorporated over 100 different features based on data from OSM as
model inputs.

Despite the extensive coverage of OSM data globally (Barrington-Leigh and Millard-Ball,
2017), variations in coverage can exist across different regions of the world (Neis et al.,
2013) and within low and middle income countries (Lloyd et al., 2020). Numerous efforts
have been made to assess the accuracy and completeness of OSM (Herfort et al 2023,
Zhou and Lin, 2019, Zheng and Zheng, 2014, Tian et al., 2019, Camboim et al., 2015,
Barrington-Leigh and Millard-Ball, 2017). A growing body of literature on the use of machine
learning to detect building and road features from satellite imagery presents one possible
means of supplementing data from OSM (Sirko et al., 2021, Ayala et al., 2021). Although
feature detection results may lack valuable classification labels available through OSM, such



as building residential status or road speed, there are active efforts to derive similar
information using machine learning (Lloyd et al., 2020, Brewer et al., 2021).

In addition to nighttime lights and data on building, road, & other features available from
OSM or derived from satellite imagery, remotely sensed datasets with global coverage on
climate (Matsuura and Willmott, 2015, Harris et al., 2020), land cover (European Space
Agency, 2017), pollution (Gunson and Eldering, 2020), and other topics are available to
researchers. A wide range of datasets can be accessed through platforms which abstract
data preparation, management and other technical and computational barriers which can
limit researchers’ ability to use geospatial data (Goodman et al., 2019, Tollefsen Andreas
Forøand Strand and Buhaug, 2012). Incorporating these datasets into RF models for
estimating poverty may be a low cost approach to improve model performance.

Across approaches for estimating household wealth, the DHS Wealth Index - based on
household asset ownership - is one of the most widely used sources of data on wealth
and/or poverty. While use of the DHS Wealth Index for AI based wealth estimates has been
leveraged in many applications across countries to date, none have explored potential
gender bias within these approaches. Research and applications of poverty estimates
generated using machine learning have almost exclusively incorporated the full set of DHS
households (without gender or other considerations) for training and validating models (see
Yeh et al 2020, Tingzon et al 2019). In a recent review of work in this space by Hall et al
(2022), no works focused on gender, bias or impacts on potentially vulnerable
subpopulation. Although households and individuals sampled by the DHS are representative
of the broader population of the countries surveyed, there remains the potential that the
asset composition used to generate the wealth index is skewed along gendered dimensions
or that wealth estimation models themselves are more effective at generating accurate
estimates for one gender over another. This may result in over or under estimation of poverty
along gender lines.

In an effort to expand the accessibility and uptake of machine learning methods for
estimating poverty, and enable exploring potential gender bias in associated models, we
have produced an approach leveraging entirely publicly available data and open source
code that can be replicated and modified for a wide range of potential use cases. In this
report, we will explore potential gender bias of poverty estimates produced using random
forest regressions trained on DHS surveys and a range of geospatial variables.

Literature on Assets-Gender-Wealth Relationships

Wealth can be measured in a variety of ways but it is frequently derived from data collected
from household surveys, specifically assets owned by individuals or the household.
Available household level data such as the DHS does not normally differentiate between
who owns what assets and therefore wealth is measured at a household level regardless of
gender. Wealth can be distributed quite differently between men and women even within the
same household and therefore the traditional commonly used wealth indicators might not
reflect the correct wealth levels for both genders. Below we explore some of the literature
around asset ownership and how it can vary between genders.



There is not one strict way to interpret asset ownership or collect asset data for individuals
and households. For example, ownership can be challenging to define because the reported
owner might be different from the economic owner or from the documented owner of an
asset (Doss et al. 2017). Different assets can also be weighted differently as seen with the
Sustainable Livelihoods Framework where natural (land and water), physical (agricultural
and household durables), financial (cash or savings), human (health, knowledge, and skills),
and social (group membership and social networks) all hold different values when it comes
to determining wealth (Johnson et al. 2016). These different types of assets can have
varying impacts on household wealth and therefore they could have differential impacts on
smoothing consumption, or on a household’s ability to handle shocks, or a household’s
ability to increase income (Oladokun and Adenegan 2017). Amongst all of this, asset types
and asset preferences can vary both between countries, within countries, and between
genders (Oladokun and Adenegan 2017).

There are a variety of ways gender can interact with assets including differences in
demographics. For example, in Nigeria, being divorced or widowed, having no or low
education, living in a small sized household, being between the ages of 15-24, and living in a
household with a female head of household has all been shown to reduce asset ownership.
Conversely, having high skilled manual employment and service employment, larger
household size, and a higher education level increases asset levels (Oladokun and
Adenegan 2017). Wealth levels for men and women can also vary both across and within
countries. For example, in Senegal, female-headed households actually have more asset
wealth and own more land-wealth than male-headed households (although this is not
consistent across the country) (Fisher and Naidoo, 2016). While some gendered wealth
findings change between countries, Fisher and Naidoo (2016) find that male headed
households have, on average, 13% more asset wealth and 303% more land wealth than
women across a number of countries in Africa, Asia, and South America. This finding
highlights the need to ensure that different asset wealth is weighted correctly since the divide
between men and women in land ownership is much larger than in other asset ownership.
Additional cross-nation gendered wealth research has revealed that country level regulations
and laws that can also impact gender asset splits, specifically in relation to land ownership.
Countries with more gender egalitarian legal regimes have been found to have higher levels
of property ownership for married women (Gaddis et al. 2022).

These findings highlight the need to assess gender wealth in a localized geographic way and
through more detailed data. Since most of the available country-level household level data
does not break assets down by gender, it leaves researchers with using the gender of the
head of household for such calculations but this may underestimate female-owned wealth
since women in male-headed households also have land and wealth holdings (Fisher and
Naidoo 2016).

In order to move beyond using the gender of the head of household in large surveys, more
detailed data on asset ownership is needed. In Ghana specifically, the Gender Gap Asset
Project1 has been working on collecting individual-level data to understand women’s and

1

https://www.google.com/url?q=https://sites.google.com/view/genderassetgap/home?authuser%3D0&s
a=D&source=editors&ust=1673447650003536&usg=AOvVaw0Ki_KFAiSBZ_UrG88_SC0x



men’s asset and property ownership. Their results have been published in several papers
that focus on how assets differ between men and women. In Ghana, they find that there is
no community property in marriage unless the couple specifically decide otherwise which
means men are more likely than women to own the primary residence. Men are also more
likely to own a vehicle and a refrigerator (although both vehicle and refrigerator ownership is
low) and they are more likely to own all forms of livestock and large agricultural equipment.
There is also a high gender gap when it comes to cell phone ownership (42% of men and
15% of women own one). However, women are more likely to own a non-farm business
(35% of women, 14% of men). Overall, women own fewer assets than men and additionally,
those assets are generally worth less (Doss et al. 2012).

Additional studies have added to this analysis by looking at both asset accumulation and risk
preferences through asset ownership in Ghana. Marya Hillesland finds that women hold
significantly fewer risky assets than men in Ghana which suggests that there is a difference
in relative risk aversion however this could potentially be due to men having more wealth
overall than women (Hillesland, 2019). Cheryl R. Doss and her co-authors also find that
women are less likely to acquire assets through the market than men and women use a
larger number of financial sources to purchase assets such as loans even though it is more
difficult for women to receive a loan given that Ghana’s formal lending is concentrated in
private banks that favor men (Doss et al. 2019). This is attributed to the fact that women
often have more family related financial obligations than men and are therefore less able to
save than men (Friendmann-Sanchez, 2006).



Methodology

To leverage geospatial data to produce effective estimates of poverty, we train a series of
random forest regressions (RFRs) using varying combinations of features in order to
produce wealth estimates at Demographic and Health Surveys (DHS) cluster locations in
Ghana. The survey cluster locations and wealth outcome metrics are from the 2014 DHS in
Ghana2. Building and road footprints, along with other volunteered geographic information
(VGI), are retrieved from OpenStreetMap (OSM). Additional geospatial data including
nighttime lights are accessed using the free geospatial data repository GeoQuery (Goodman
et al., 2019). Varying combinations of the OSM and geospatial variables are explored as
input features for the RFR models. The RFRs are optimized over a range of hyperparameter
values (settings which influence the behavior of models and are adjusted based on
application), and the feature selection used for training is refined based on evaluating feature
importance and collinearity of variables. To explore the relationship between model
performance, input features, gender, and poverty, we test models utilizing the DHS data both
in its raw form (e.g., all households) as well as when subset according to gender based on
various gender classification schemes.

Data and Preprocessing

Demographic and Health Surveys

The units of analysis and outcome measure representing poverty are from the DHS rounds
conducted in Ghana in 2014. The DHS Wealth Index and related indexes derived from DHS
data has been widely used in machine learning based approaches for estimating poverty
(Jean et al., 2016, Steele et al., 2017, Tingzon et al., 2019, Lee and Braithwaite, 2020), and
are based on household assets such as housing material, sanitation facilities, televisions,
and others (Rutstein and Johnson, 2004). DHS surveys are conducted on individual
households and aggregated to clusters identified as either rural or urban. To preserve
anonymity, cluster locations are randomly displaced by up to 2 km in urban areas and up to
5 km in rural areas (1% of rural clusters are displaced up to 10 km). To account for
displacement, urban and rural cluster locations are buffered by 2 km and 5 km respectively
to create our units of observation. For each cluster we retain the DHS cluster identifier, the
average Wealth Index of the cluster, the cluster longitude and latitude, and the buffered unit
of observation.

Using the Ghana DHS survey, Wealth Index values from 11,835 households were produced
across 427 clusters. The full set of households/clusters are utilized as the gender agnostic
baseline. Gendered subsets of the data based on head of household, household structure,
and household asset ownership are produced for comparison and typically cover all clusters
for both genders3.
OpenStreetMap

3 Exact cluster coverage will depend on final classification schemes, but we anticipate few clusters will
need to be omitted due to household gender classification.

2 DHS surveys are typically conducted about every 5 years, while in Ghana it has historically been
closer to 6 years. The most recent round of the DHS in Ghana is ongoing as of early 2022.



Data on the location of roads, buildings, points of interests, and other physical features from
OSM were obtained using Geofabrik, a repository which provides access to OSM data.
Recent OSM data (2021-2022) was used due to substantially reduced coverage existing in
earlier years4. The groups of raw OSM features (buildings, roads, etc.) contain up to
hundreds of distinct, non-standardized labels provided by users to describe features.
Examples of building labels include ”medical”, ”clinic”, ”hospital”.

To standardize the wide range of labels, spelling variations, etc. provided by users, we
classify features into sub-groups such as ”health” for buildings. For each sub-group, as well
as for all sub-groups combined, we generate information such as the count or total area of
features within each DHS cluster. The features generated were adapted from approaches
utilized previously in related literature (Zhao and Kusumaputri, 2016, Tingzon et al., 2019,
Lin Htet et al., 2021). The full list of sub-groups and features generated is listed in Table 1. In
total, 71 OSM features are produced for each DHS cluster.

Table 1: OpenStreetMap groups and features.

Nighttime Light and Other Geospatial Variables

Publicly available data on nighttime lights and additional geospatial variables are aggregated
for each buffered DHS cluster. Nighttime light (NTL) data is available from the Visible
Infrared Imaging Radiometer Suite’s (VIIRS) day night band (Elvidge et al., 2017). The raw
NTL data is aggregated to the DHS cluster buffers using the mean, median, min, max, and
sum of pixels per cluster. Additional geospatial variables related to population, environmental
conditions, land cover, and pollution were also prepared using similar aggregation metrics as
appropriate. The full list of geospatial variables along with the years of data used are listed in
Table 2. Data is extracted from the year prior to the DHS survey (2013) in most cases.

4 For example, in 2017 approximately 80,000 building footprints had been recorded in OSM for
Ghana, while five years later in 2022 over one million building footprints were recorded. This
substantial increase is largely tied to growth in OSM user activity rather than actual building
development.



Including cluster longitude and latitude to account for unspecified regional trends, a total of
89 features are prepared based on nighttime lights and other geospatial variables. The total
number of features exceeds the number of underlying datasets due to underlying data
aggregation methods. For example, for each year of land cover data over a dozen features
are produced pertaining to each land cover category. Other datasets such as nighttime lights
produce multiple features due to multiple methods of aggregating data to DHS clusters
(mean, max, sum, etc.). All of the geospatial variables, including nighttime lights, were
accessed and prepared via data requests through the free geospatial data platform,
GeoQuery (Goodman et al., 2019).

Table 2: Geospatial datasets and years used in random forest regressions

Random Forest Design

Random forests are an established method for performing classification and regression
utilizing an ensemble of decision trees (Breiman, 2001). Random forests have been applied
in a wide range of applications incorporating remote sensing and geospatial data (Belgiu and
Dragu, 2016), including producing poverty estimates (Zhao et al., 2019). Compared to deep
learning approaches, RFs have lower computational costs and require less data and data
preparation (Lin Htet et al., 2021). A key distinguishing factor between CNNs or similar deep
learning approaches and RFs is that RFs require input features to be defined, while CNNs
use inputs (e.g., images) to identify relevant features independently.

Compared to similar methods, such as those incorporating gradient boosting (e.g., gradient
boosted trees), or other alternative machine learning algorithms which are less
computationally intensive such as support vector machines (SVMs), random forests provide
several benefits. Random forest hyperparameters generally require less involved tuning to
achieve suitable performance, and interpretation of random forest models and feature
importance is more straightforward. In addition, the structure of random forests easily
supports parallelization which makes fully utilizing computational resources possible and can
significantly reduce run times of models.



Implementation

We utilize the Random Forest Regression (RFR) class from Scikit-Learn due to its
accessibility and use in prior research (Tingzon et al., 2019, Zhao et al., 2019). A grid search
is used to test a range of values for hyperparameters including number of trees, maximum
tree depth, and maximum number of features considered per node5. For all RFRs, five-fold
nested cross validation is employed to validate model performance. An example set of
hyperparameters testing during the grid search is shown in Table 3. The hyperparameters
are tested over a range of values that is broadly guided by best practices and previous
literature.

RFR Hyperparameter Values Relevance

Number of estimators
(trees generated per RF)

300, 500, 1000 More trees increase the complexity of the RF and
can improve performance, yet will produce
diminishing returns at some point.

Max features
(considered at a given
node for making a split)

"sqrt", 0.33, 0.5, 1.0 A key element of a RF is that not all features are
utilized at each split, and features considered are
randomly selected. This value defines what
proportion of all features at a given node are
considered.

Max depth
(of an individual tree)

7, 10, 15, 20 Increasing tree depth increases complexity and
can refine performance, yet typically will have a
limit to avoid overfitting or unnecessarily
complicated models.

Minimum samples required
to split a node

2, 3, 5 If a node has less than this value it is considered
terminal. This can help prevent overfitting when
dealing with small leaf sizes and/or limited training
data.

Minimum samples required
to produce a new leaf node
from a split

1, 2, 4 Similar to the minimum sample for splitting, this
value defines how many samples must exist in
each leaf from a split. It can prevent splits which
would result in highly imbalanced leaves.

Error criterion
(used for optimization of
splits and feature
selection)

"Squared_error" While other options for the error criterion exist,
squared error is widely used and effective. It
utilizes the variance reduction as feature selection
criterion for each split in a tree.

Table 3: Example hyperparameters explored in RFRs

In addition to utilizing Scikit-Learn to generate and train the RFR models, we leverage two
tools to support running models and tracking results: Prefect and MLFlow. Prefect is a
workflow orchestration tool that enables building, running, and managing flows of code. Use
of Prefect enables easily keeping track of model training runs using various training data

5 Technical documentation of hyperparameters is available at
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

https://scikit-learn.org/
https://www.prefect.io/
https://mlflow.org/


classifications schemes, rerunning existing models when code changes are made, and
ensuring all runs complete without errors.

Figure 1: Example of Prefect user interface for managing model runs

Figure 2: Example of detailed records of configuration used for each run using Prefect

Within Prefect, Dask is leveraged for parallelization of tasks in order to run multiple subsets
of the model generation and training process simultaneously and reduce the amount of time
required for computation. Beyond the high level workflow management provided by Prefect,
Dask provides a separate dashboard which contains more specific information on
computational processes and resource usage.

While utilizing Prefect and Dask do not require any additional effort - and can essentially be
ignored when all models / code runs smoothly - we also include the ability to run models
using simplified and non-parallelized code. This and many other configurations associated
with running jobs are controlled by a relatively simple configuration file.

https://www.dask.org/


Once the code to generate and train models is run using Prefect, MLFlow enables tracking
the results of models. As each model is trained and validated, MLFlow logs the
hyperparameters, input data, performance, along with additional outputs to a database and
provides a convenient user interface to explore the data. This enables identifying trends
across models such as best performing hyperparameters, important model features, along
with visualizing detailed plots associated with each model.

Figure 3: Example of database produced by MLFlow for tracking model results

Similar to Prefect, directly interacting with MLFlow is not required, and all outputs are logged
and stored into local files and figures which are easily accessible. MLFlow simply makes
sorting through the results from many models easier, and helps to identify critical trends in
model parameters and performance.

Figure 4: Example of custom interactive model output made available through MLFlow
for exploring model hyperparameter performance

Features

Using these tools, we first produce a series of RFR to estimate poverty in Ghana using all
household data (i.e., gender agnostic). These RFR models are created using several
different combinations of input features. The complete set of features include those from



OSM listed in Table 1, as well as nighttime lights and other geospatial variables listed in
Table 2.

Two very simple models are trained to establish a baseline. Nighttime lights is commonly
leveraged in linear models to approximate poverty or economic activity and provides an
important reference point. In addition, the raw geospatial location (e.g., longitude and latitude
values) has the potential to highlight spatial trends driving wealth estimates. Establishing the
effectiveness of either NTL or raw location information at predicting wealth will provide
meaningful context as additional features are added to the models.

1. Only NTL
2. Survey cluster coordinates only

Next, we train models which are “overloaded” with all features from either OSM or the
geospatial variables, or a combination of the two. Many of these features are highly
correlated with other features in the set, or are not guaranteed to be generalizable across
regions (e.g., certain OSM features are much more likely to be recorded in urban areas than
rural areas). In addition, the models resulting from these large sets of features are typically
more complex and take longer to train, without resulting in significantly improved
performance of more finely tuned models. However, by including all features we can develop
an initial impression of model capabilities and begin to assess what features are most
important to model performance.

3. All OSM features
4. All OSM features plus NTL
5. All other geospatial variables (including NTL)
6. All geospatial and OSM features

The next step involves subsetting the features to a more practical set for detailed analysis.
Features selected for refined models are generally intended to be more easily accessible,
available across regions, and available in time series.

For OSM, the criteria for retaining features is whether they could be produced using
standard satellite imagery rather than the OSM database. The two main categories of
features this results in are based on building footprints and road networks, for which a
number of satellite based products currently exist (e.g., Planet Analytic Feeds, Ecopia Tech)
or can be produced using a range of machine learning approaches (e.g., SpaceNet
competition results and many other academic publications). The resulting OSM features
include length of all road segments, distance to nearest road, count of all buildings, average
area of all buildings, total areas of all buildings, and ratio of the area of all buildings to total
cluster area.

Based on the substantial number of features extracted from GeoQuery across dozens of
datasets, time series, and aggregation methods (e.g., min, max, mean, median) the
geospatial variables required considerable trimming to produce a practical set of features.
The features are refined based on collinearity, data accessibility, and feature importance

https://www.planet.com/products/analytics/
https://www.ecopiatech.com/
https://spacenet.ai/


(Zhao et al., 2019). Features which have high collinearity, yet relatively lower feature
importance (based on models including all OSM and geospatial variables) are then removed.

The selected features represent datasets which are widely available (meaning both publicly
available, and having global spatial coverage), available in time series (yet typically data
from only the year prior to the DHS survey is used for training), broadly accepted as an
accurate and reliable source of data, and could reasonably be associated with wealth or
economic conditions.

The resulting subset of geospatial features includes NTL max and median, average
elevation, total precipitation (annual), average normalized difference vegetation index (NDVI
- a measure of plant greenness), distance to water, travel time to nearest major (population
>10k) city, population, land cover associated with urban areas, forests, and cropland, and
land surface temperature.

7. The subset OSM features
8. The subset geospatial features
9. The subset OSM features plus all geospatial features
10. The subset OSM features plus only NTL
11. The subset OSM features plus the subset geospatial features

As a final exercise to improve accessibility, and reduce data dependence and model
complexity, we train a model using only a minimal set of features. The minimal set of less
than ten features (reduced from over 150 features from OSM and geospatial variables total)
consists of features which have routinely been found to be important across the above
models. Currently, this includes median and maximum nighttime lights, population, urban
land cover, longitude, latitude, total length of roads, and ratio of building footprint area to total
cluster area. This minimal set of features is intended to provide high levels of performance
with reduced model complexity, without overfitting the model for the current use case. This
set of features is subject to change as testing and model refinement continues.

12. Minimal set of features

For all of the above features sets we also run a comparable linear regression model
alongside the RFR.

Gender Classification

The baseline classification for this work will be gender agnostic and incorporate data
from all households surveyed. This set of data is reflective of what is widely used in
machine learning based approaches to estimating poverty that leverage the DHS WI.

The core comparison of gender specific data will be based on the gender of the head of
household. Identifying household gender based on the gender of the head of household is
the most commonly used approach in literature. While this approach results in roughly two
thirds of households being identified as male, the effective sample size for the RFR model is



barely impacted since most survey clusters still have some number of female households.
The count of households identified for each gender and resulting cluster count is listed in
Table 5.

Much smaller counts of gender-specific households within survey clusters has the potential
to create noisier data. This is a result of gender classification taking place at the household
level, and then being aggregated to the survey cluster level for which geospatial location
information is available. We will run additional models as robustness checks in which we
artificially limit the number of male households selected for aggregation to the cluster level.

The secondary gender classification is based on whether a household contains any
males. For the purpose of this work, we limit the age of males considered to those between
the ages of 15 and 100. The purpose of this classification is to provide a case where we can
eliminate any potential ambiguity between identification of a head of household and the
person who owns or controls assets. If no males are in the house, it must be a female
household. The tradeoff for gaining additional certainty regarding household gender is that
there are fewer female households.

The final set of gender classifications are based on asset ownership and control. Gender
driven asset ownership and/or control was determined utilizing a combination of information
provided by CDD-Ghana in their local context report, and household ownership rates derived
from the DHS data. The information provided by CDD-Ghana includes a list of common
household assets and whether they are more likely to be controlled (not owned) by one
gender over the other. Table S1 in the Supplemental Information contains the list of
gendered-controlled assets which overlap with assets used in the DHS WI. The full list of
assets as well as a summary of CDD’s full report are also provided in the Local Context
Report Summary section of the Supplemental Information.

Classifying households based on the head of household gender was utilized to generate
differential gender ownership rates of assets used in the DHS WI. Assets with highly
differential ownership rates between male and female households were cross referenced
with the list of gender controlled assets provided by CDD. Four assets associated with male
and female households were selected from the overlapping assets. The selected assets,
along with ownership rates, are listed in Table 4.

Table 4. Highly gendered assets based on DHS data and head of house households, combined with
CDD’s findings. Male assets are blue, female assets are red. Percentages reflect the percent of
households who own each asset within a category (e.g., all households, female HoH, male HoH).

Asset

%
Ownership
Among All
HHs

% Ownership
Among HHs
w/ Female
HoH

% Ownership
Among HHs
w/ Male HoH

Difference
(Female-Male)

Bicycle 30.12 12.10 38.74 -26.64***

Owns land suitable for agriculture 46.18 36.40 50.85 -14.45***



Asset

%
Ownership
Among All
HHs

% Ownership
Among HHs
w/ Female
HoH

% Ownership
Among HHs
w/ Male HoH

Difference
(Female-Male)

Motorcycle/scooter 12.41 3.42 16.71 -13.29***

Bank account 47.61 39.25 51.61 -12.36***

Type of cooking fuel: charcoal 30.00 39.04 25.67 13.37***

Type of toilet facility: ventilated
improved pit latrine shared 30.95 36.03 28.52 7.51***

Type of toilet facility: ventilated
improved pit latrine 33.74 38.80 31.32 7.48***

Source of drinking water: public
tap/standpipe 21.38 26.34 19.01 7.33***

Using the identified assets, four classification schemes were implemented:

1. Any household owning any of the male assets is classified as male. All other
households are female.

2. Any household owning any of the female assets is classified as female. All other
households are male.

3. Any household owning any of the male assets is classified as male. Any household
owning any of the female assets is classified as female. Households which own at
least one asset from both the male and female asset lists are included in both the
male and female household lists.

4. Any household owning any of the male assets is classified as male. Any household
owning any of the female assets is classified as female. Households which own at
least one asset from both the male and female asset lists are dropped from both the
male and female lists.

Each of the four asset-based classification schemes provide a different way of looking at the
data and household gender. An important factor to emphasize is that while differential
ownership rates and gendered control of assets may be representative of meaningful gender
trends in Ghana, they are not necessarily ideal for classifying households. For example, the
most strongly female gendered asset is charcoal cooking fuel, which is over 13% more
common in female headed households. Despite that, actual absolute ownership rates for
charcoal cooking fuel are 39% for female headed households and 25% for male headed
households. Similarly, while 50% of male headed households own agricultural land, so do
36% of female headed households.

The imperfect nature of using assets to classify households is reflected in the resulting count
of households classified as male or female using the asset based approaches, as seen in
Table 2. When selecting households based on male or female assets, considerably more



households are selected for each gender than based on head of household gender.
Excluding households which own assets from both categories produces a much smaller
subset of households for each gender as would be expected, but limits the cluster coverage
which may impact the ability to sufficiently train models. The limitations of these classification
approaches, as well as broader limitations and assumptions related to the approaches are
discussed further in the subsequent Limitations section.

Table 5. Household counts and cluster coverage based on gender classification strategies

Classification
Strategy

# Male
Households

# Female
Households

# Male
Clusters

# Female
Clusters

Gender agnostic (all) 11835 427

Head of Household 8008 3827 427 421

Any Males in Household 8835 3000 427 418

Has Male Assets 9555 2280 427 399

Has Female Assets 5174 6661 411 412

Male vs Female Assets
(include overlaps)

9555 6661 427 412

Male vs Female Assets
(exclude overlaps)

4479 1585 406 335

Aggregating gender classified households to the cluster level resulted in a total of 13 cluster
level datasets. The associated CSV files are available along with this report, included in a
ZIP file.

Gender Specific DHS WI Creation

To understand the influence of assets on the DHS Wealth Index, we leveraged
documentation on the DHS WI and the DHS WI construction methodology to replicate the
wealth index for the 2014 Ghana DHS round. The process of constructing the wealth index
produces both the final wealth index values, along with weights associated with each
household asset used in the index. The weights are constructed using a principal
components analysis (PCA) that allows for differential weights on assets by urban/rural
location of the cluster. The construction methodology, however, does not allow for weights of
assets to differ by gender of the household.

Gender specific asset importance could be explored by recreating the DHS WI using only
subsets of households associated with either male of female headed households. This
would, in effect, allow weights on assets to differ by gender of the household. The resulting
asset weights and difference in household wealth index values can then be used to gain
insight into what assets drive the DHS WI for different subsets of the surveyed population,
and how resulting variation in the DHS WI values may influence wealth estimation models.

https://dhsprogram.com/topics/wealth-index/index.cfm
https://dhsprogram.com/topics/wealth-index/Wealth-Index-Construction.cfm


International Wealth Index

The International Wealth Index (IWI) is a simpler, standardized wealth index that can be
generated for households across countries and surveys using data on only twelve assets
(seven consumer durables, access to two public services, and three housing
characteristics). Unlike the PCA-based DHS WI, the IWI uses fixed weights and can be
produced far more easily. We have generated a Python script that can be utilized to generate
the IWI for all households in the 2014 Ghana DHS, and can be adapted to other
surveys/rounds by simply remapping a subset of the asset variables where necessary.

The standardized nature and fixed weights of the IWI provide the benefit of broader
compatibility across countries and potentially reduced chances of country-specific asset bias
influencing the index. However, the use of fixed weights could potentially ingrain any
overarching gender bias which exists in the smaller set of assets/weights. We will explore
differences between IWI values and the DHS WI values for households to consider how the
IWI might be leveraged for more effective and equitable AI approaches for wealth estimation.

https://globaldatalab.org/iwi/


Results

In this section we explore the analysis and findings, based on the background and
methodology established in the previous sections. The findings detailed here will cover five
areas: 1) model performance, 2) feature importance, 3) recreating the DHS WI, 4) exploring
an alternative wealth index, and 5) using gender specific models for cross-gender estimates.
In the subsequent discussion section we will cover critical limitations of the work conducted
to date, and directions for future work. Additional figures, tables, and other referenced
material will be included in the Appendix. Other content referenced, such as code, has been
made publicly available as part of the outreach and dissemination efforts and is accessible
via links provided.

The first section on model performance will evaluate the effectiveness of models produced
for each gender by exploring several components of model creation. First we will look at the
impact of hyperparameters that define how the model is created and trained. Next we will
consider what features (independent variables) provided to the models are most useful and
practical. Then we will explore different gender classification approaches and how they
impact model performance. As a subset of gender classification, we will also test if
imbalances in the number of gender specific households within each cluster used to train
models can impact performance. Finally, for a refined set of models we will consider what
features were most important to the model creation and how those features varied between
genders.

In the second we will utilize models trained on gender specific data to produce wealth
estimates using data from the other gender. Section 3 will explore the underlying creation of
the DHS WI and the relevance of specific assets by recreating the DHS WI using data for
each gender. Then, in section 4 we will consider the use of an alternative standardized
wealth index which may be less subject to survey specific data biases. Finally, we will
highlight some critical limitations of the current work and present potential directions for
future work.

Model Performance

We subset the 2014 Ghana DHS data into 13 sets of household data (Table 1a) based on
our gender classification criteria which include a gender agnostic approach using all
household data, as well as male and female subsets resulting from six different gender
classification approaches for households. Not all sets of data are used in each portion of the
model performance analysis, yet the core household gender classification based on head of
household gender is included in every analysis as a consistent point of reference, as it is the
most commonly used gender classification approach seen in research literature.

The gender of a household is an imperfect definition, as there is no absolute gender for a
single household in most cases. In most households, assets and overall wealth are reflective
of household members of both genders. Household member specific assets and wealth are
not available however, and would likely be difficult to collect, so we attempt to produce
meaningful approximations of “household gender” using these approaches.

Table 6a. Overview of all data classification strategies to be used for running models.



Male Female

Gender agnostic (all) 1

Head of Household Gender 2 3

Any Males in Household6 4 5

Household Owns Male Assets* 6 7

Household Owns Female Assets* 8 9

Male vs Female Assets
(include overlaps)

10 11

Male vs Female Assets
(exclude overlaps)

12 13

A critical consideration when applying different classification approaches is the resulting
sample sizes in terms of both households counts and cluster coverage. The associated
household and cluster counts for each classification approach are detailed in Table 6b and
will be referenced in the subsequent analyses.

Table 6b. Household counts and cluster coverage based on gender classification strategies

Classification
Strategy

# Male
Households

# Female
Households

# Male
Clusters*

# Female
Clusters*

Gender agnostic (all) 11835 427

Head of Household 8008 3827 427 421

Any Males in Household 8835 3000 427 418

Has Male Assets 9555 2280 427 399

Has Female Assets 5174 6661 411 412

Male vs Female Assets
(include overlaps)

9555 6661 427 412

Male vs Female Assets
(exclude overlaps)

4479 1585 406 335

Hyperparameters Search

The initial component of model performance we explored was the impact of
hyperparameters. Hyperparameters define how the random forest and trees within the forest
are constructed and optimized, and can affect a model’s practical performance. Poorly tuned
hyperparameters can result in models that are unable to effectively learn from the training
data to make accurate estimates, or models which are overfit to the training data and fail to
be generalizable.

6 Households with at least 1 adult male (>16 years old) are classified as male, while only households
with no adult men are classified as female.



To assess the impact of hyperparameters on models to estimate poverty, we tested a broad
range of hyperparameters associated with random forests including the number of
estimators (trees generated per RF), maximum features (considered at a given node in a
tree for making a split), the maximum depth (of an individual tree), the minimum samples
required to split a node, and the minimum samples required to produce a new leaf node from
a split. Hyperparameters were tested separately across models trained on data from male
headed households and female headed households.

Four combinations of feature sets (variables used for training) were tested to evaluate
models under different conditions. The feature sets used included 1) only nighttime lights
(NTL) metrics (mean, min, max, etc.), 2) all OSM features, 3) all geospatial features, and 4)
a subset of features from OSM and the geospatial variable. Additional details on the feature
sets and further testing of their impacts are explored in a subsequent section.

Figure 5. Boxplots of the performance (R2 values) across all male HoH and female HoH models based on a range
of hyperparameters. Includes boxplots with results of all runs aggregated by HoH gender.

Results from the hyperparameter search revealed that there were relatively minor
differences in model performance (based on model R2 value7) across the hyperparameters
when considering the full set of models tested (Figure 5). Some of the extremes (minimum or
maximum R2across tests) for a given hyperparameter varied, but median values were fairly
consistent. There was however a clear shift in the performance of models using male
household data compared to models using female household data. On average, across the
range of hyperparameters male models were around 10% better than female models.

Looking at hyperparameter impacts within each set of gendered models separately did not
reveal any notable gender specific variations. Male household models consistently produced
a median R2 value of around 0.79 (Figure 6) while female household models consistently
produced a median R2 value of around 0.72 (Figure 7).

7 R2 was used as it is most frequently used across literature on AI based wealth estimates.



Figure 6. Boxplots of model performance (R2 values) using varying hyperparameters for only male HoHs.

An additional set of hyperparameter tests were performed which incorporated data from an
alternative household gender classification approach. In addition to the previous models
which classified gender based on the head of household, we included models which
classified gender based on whether any males were present in the household. The
hyperparameters used in this set of tests were narrowed slightly from the original range of
hyperparameters based on minor differences in performance detected in the first set of tests.

Figure 7. Boxplots of model performance (R2 values) using varying hyperparameters for only female HoHs.

The results again indicated no major shifts in performance due to hyperparameters.
Differences between the male and female household models were also similar to the first set
of tests. Models using the presence of males to classify household gender slightly
underperformed relative to models based on the head of household gender on average
across all hyperparameter tests (Figure 8).



Figure 8. Boxplots of model performance (R2 values) using refined hyperparameters and incorporating an
additional gender classification approach based on male presence in a household.

The specific variations across gender and classification approach are illustrated in Figure 9.
Male household models - both based on head of household gender and presence of males
in household - consistently outperformed female household models and showed very similar
performance to the models based on all household data. Female household models based
on presence of males slightly underperformed female household models based on head of
household gender. The reduced performance may be the result of fewer households having
no men than households headed by women. The impact of household sample size on model
performance will be further explored in a later section.



Figure 9. Boxplots of model performance (R2 values) using refined hyperparameters broken down gender
classification approach and gender.

Based on all findings from the hyperparameter search, an optimal set of hyperparameter
values were selected to be used in the remaining analysis.

Table 7. Optimal hyperparameters

Hyperparamer Optimized Value

Number of estimators 500

Max features 0.33

Max depth 10

Min samples split 2

Min samples leaf 1

Feature Selection

A total of eleven different feature sets, utilizing over 100 distinct features, were tested across
models for both male and female households. Features are derived from spatial information
sources such as satellite imagery, sensors, and other Earth observation data, along with
community driven records of spatial features such as roads and buildings from
OpenStreetMap. All features are produced using spatial data integration methods based on
the locations of the DHS clusters connected with households and their associated DHS WI.

Table 8 describes each feature set and the variables it contains. The exact features
associated with each feature set will be made publicly available as part of the GitHub
repository with the final report. All features are spatially extracted for areas corresponding to
the DHS survey clusters which are constructed as either 2km or 5km buffers (urban or rural)
to account for spatial anonymization of the data to protect respondents.



Table 8. List of feature sets used for training poverty estimation models.

Feature Set Name Description of Features

loc Contains only the longitude and latitude of the cluster

ntl Features describing nighttime lights within the cluster (min, mean, max, mean, median, and
sum)

all-geo Contains over 30 geospatial variables pulled from AidData’s GeoQuery platform. These
include a broad range of features on land use, climate and the environment, populations in
the area, and more. Also includes the ntl features.

all-osm 75 features derived from OpenStreetMap data consisting of the counts of different types of
buildings, roads, points of interest, as well as other traffic and transport infrastructure (e.g.,
bus stops).

sub-geo Contains 14 geospatial variables that were correlated with the DHS WI and were seen to be
important features in early tests. Highly correlated features from within all-geo were all
trimmed to keep only the most important among them.

Features include distance to water, NDVI, NTL max and median, temperature and
precipitation, travel time to cities, urban, cropland, and forest land cover, elevation and
population. Also include the base longitude and latitude features.

sub-osm A subset of features based on OpenStreetMap data which reflect features that could be
derived directly from satellite imagery (i.e., using machine learning). Includes the total and
average area of all buildings, the count of buildings, and ratio of building area to total area,
the length of all roads, and distance to nearest road.

sub-osm-all-geo Combines the sub-osm and all-geo features

sub Combines the sub-osm and sub-geo features

all-osm-ntl Combines the all-osm and ntl features

sub-osm-ntl Combines the sub-osm and ntl features

all Combines all-osm, all-geo, ntl, and loc features

The results of all models using each feature set, without yet considering gender, provide
insight into the usefulness of the different features (Figure 6). The best performing (most
effective at allowing the model to estimate wealth) feature set is “all-geo” using all the
geospatial features aside from the OSM features. Including every feature (all geospatial plus
OSM) performs only slightly worse. The slight reduction when adding more features may
reflect a reduced ability of the RF to be created using an excessive amount of features that
do not add much value. The combined subset of geospatial features (sub-geo) and subset of
geospatial and OSM features (sub-osm) performs nearly as well as the all-geo, indicating the
performance is likely highly dependent on a handful of key features (see “sub” description in
Table 8).

The primarily OSM based feature sets (all-osm and sub-osm) lag notably behind the use of
only geospatial features, yet receive significant improvements by incorporating NTL features
(all-osm-ntl and sub-osm-ntl). NTL features alone enable reasonable model performance
(ntl). Use of only the location of clusters by providing the longitude and latitude as features
(loc) served as a simple baseline for model performance.



Figure 10. Boxplots of model performance (R2 values) across all models (gender agnostic, male, and female)
broken down by feature set used for models.

The feature set results are then broken down by gender and we can compare performance
of models using all household data, male household data, and female household data. The
mean R2 values across all models for each gender classification (including all classification
approaches in Table 6b) for each feature set were recorded (Figure 11). Male household
models were very similar in performance to gender agnostic models across all feature sets.
Female household models were consistently lower? by about 0.1 R2.

While no deeper gender related trends emerged from this analysis, it did enable us to refine
our feature selection. The most efficient feature set (i.e., fewest features for best
performance) was clearly the subset of geospatial and OSM features. Efficiency is not
directly relevant to the analysis, but will facilitate use of these methods in further applications
by reducing dependency on additional datasets. For the remaining analysis we will prioritize
utilizing the subset of geospatial and OSM features (sub) along with features sets for NTL,
all OSM, and all geo as robustness checks to continue to monitor for any potential variations
in performance across features as different facets of the model performance are explored.



Figure 11. Bar chart of model performance by gender based on the mean R2 of all models using each feature set.

Gender Classification

The next component of the analysis focused on comparing all gender classification
approaches. A total of 6 classification approaches (male and female subset for each) were
explored in addition to the baseline gender agnostic approach (Table 6a). Models for each
classification approach and gender were run using all feature sets described in Table 8 with
the optimal hyperparameters identified from the hyperparameter search.

The result of training and validating models across gender classification approaches
revealed that female classified models consistently underperformed male classified models
(Figures 12a, 12b).



Figure 12a. Distributions of model performance (R2 values) across all male and female models tested.

Interestingly, although classification based on male presence in the household would seem
to be the more reliable predictor of “true positives” for female households (i.e., it may miss
many households led by women since they include men - the “false negatives” - but it will
accurately capture every female led household without men) it does not result in a better
performing model. The female models based on head of household gender outperform
female models based on male presence, but by a narrow margin.

The best performing female models are those based on households selected based on
ownership of “female” assets as identified in the gender classification process (see
Methodology) leveraging information on the local context of gendered asset ownership and
DHS asset ownership trends (Table 6b). It is critical to note though, that this is also the most
broad classification of female households, and results in the largest household count. While
the female asset classification is not necessarily the best classification of female
households, as many male households likey own at least one of the same assets, it may be
better reflective of a household’s overall economic status that is more common among
female households than male. This would suggest that the model is more accurately able to
estimate wealth within a more narrow band of the economic spectrum that is more correlated
with female households (based on our classification approaches).



Figure 12b. Boxplots of model performance (R2 values) across all gender classification approaches for each
gender.

A notable finding based on the performance of models is the relationship between the
household count associated with each gender and classification approach combination. In
general, female household counts are considerably lower than male households counts
(Table 1b). While male household counts vary across classification approaches, and are on
average less than 70% of the total household count, the male models consistently achieve
performance comparable to the gender agnostic model.

Conversely, even when female household counts slightly exceed male household counts for
a classification approach, the male model performs better (see “has female assets” in Figure
12). In addition, female models typically have larger differences in household counts (fewer)
compared to equivalent male models. These lower household counts are also accompanied
by clear drops in model performance for female models. The relationship between
household counts and performance, and whether it convolutes the ability to detect gender
bias, is critical to understand. The next portion of the analysis will dive further into the impact
of variable household counts within clusters resulting from the different gender classification
approaches.



Gender Sample Sizes

One of the major caveats of the initial analysis of gender classification approaches is that the
number of households (and in some cases the number of resulting clusters) for each gender
/ classification combination varies. To evaluate whether imbalance between the household
and/or cluster count for genders impacts model performance, we conducted two tests. First,
we compare unbalanced and balanced models based on head of household gender. Next,
we compare performance when artificially reducing the size of gender agnostic data from all
households.

Data for models are balanced at the cluster level prior to cluster aggregation by randomly
dropping households within a cluster for the gender with a larger number of households in
that cluster. For example, assume using unbalanced datasets cluster A has 30 male
households and 20 female households, and cluster B has 22 male households and 26
female households. After balancing, 10 male households would be randomly dropped from
cluster A so that there are 20 male and female households. Similarly cluster B would drop 4
female households so that there are 22 male and female households.

Balancing the data for models based on head of household gender showed a notable
decrease in performance in the balanced models (Figure 13). Male models were impacted
the most by the balancing (household counts reduced), yet there were some clusters in
which there were more female households. As a result, there is a clear decrease from the
unbalanced male HoH model to the balanced male HoH model. There is also an equivalent
decrease for the female models, albeit much smaller. The decrease in the balanced models
does reduce some of the discrepancies between male and female model performance, but
there is still a clear gap between the gendered models.

Figure 13. Boxplots of model performance (R2 values) across models based on head of household gender using
both balanced and unbalanced datasets.



To more broadly explore how the number of households within a cluster impacts model
performance we artificially reduced the number of households in clusters for gender agnostic
models. The size of the original, unaltered clusters (containing all households, labeled “all” in
figures) count varies but averages around 28 households. The original clusters were
artificially reduced by randomly dropping households at two different levels. The “medium”
clusters were created by reducing household counts to 19 households, while the “small”
clusters were created by reducing to 9 households each.

The performance of the “medium” models showed a relatively small decrease compared to
the original models. However, the “small” model showed a much larger decrease in
performance (Figure 14). The disproportionately large decrease seen in the “small” model
may be indicative of a critical threshold in the amount of household data necessary to
reasonably reflect the household level characteristics (i.e., wealth) of a given cluster.

Figure 14. Boxplots of model performance (R2 values) across gender agnostic models from all households in
which cluster data was artificially reduced by varying amounts.

Feature Importance

The importance of features provided to the random forest model was also assessed. The
metrics underlying feature importance reflect how useful a given feature is in constructing
decision trees within the random forest. Usefulness itself is determined based on reducing
“impurity” within a tree, or how well the tree is able to split the data at a given node using the
features provided. More broadly, features with a high importance are more useful in
explaining wealth variation across the data.

Feature importance was calculated for a subset of models run for both male and female
classified households. The resulting importance metrics were then converted into boxplots



for each gender (Figures 15 and 16). NTL median value, urban area coverage, and
population count were the top three most important features for both male and female
households, although urban coverage (which reflects the amount of land in the cluster that
contains urban areas) had slightly greater importance for male households.

Figure 15a. Differences in feature importance between male and female models for top features.
Features further left indicate greater importance in male models, while features further right indicate greater
importance in female models. The y-axis indicates the absolute feature importance and distance between red
(male) and female (yellow) points for each feature reflects the magnitude of the feature importance difference.



Figure 15b Feature importance plot for female household models.

Figure 16. Feature importance plot for male household models.

While the remaining differences were relatively minor, there are two of note. First,
accessibility to major cities was more important when explaining wealth within female
household models (closer equates to wealthier). As women are less likely to own vehicles or



other modes of transportation, and may be depending upon men for transport, access to
cities could provide access to resources to support their household and/or jobs, both of
which would allow them to increase wealth and assets. Second, precipitation was more
important for male households. This may be reflective of men’s larger role in the agricultural
sector and dependence on crop yield for income.

Predictions

The performance of models as evaluated through training and validation, along with
associated characteristics (hyperparameters, feature importance), which we explored in the
previous sections provide valuable insights into potential gender biases when estimating
poverty. Another tool for understanding bias within models is utilizing trained models to
estimate poverty levels on gender-specific subsamples. In the training and validation
explored in the previous section, models were trained and validated on data using the same
gender classification approach. I.e., a subset of training data classified as female based on
the HoH gender was validated using a subset of data which was also classified as female
based on the HoH gender that had been set aside. Here, however, we aim to compare the
predictive ability of models trained on one gender subsample when tested on a different
gender.

To test the cross-classification predictive ability, we utilize models trained on clusters using
1) all households, 2) only male headed households, and 3) only female headed households
to produce predictions using data from each of the classification approaches. The R2 value is
calculated based on the predicted DHS WI value and the true value for each (Table 9).

Table 9. Model prediction results.

R2
Data Trained On

All Male Female

Data
Used
For

Prediction

All 0.973 0.969 0.897

Male 0.956 0.974 0.829

Female 0.913 0.881 0.958

The resulting R2 values should be considered only for the purposes of comparing relative
effectiveness when used across the classification approaches, and not as an absolute metric
of performance of these models. This caveat is critical, as in some ways the training data
and validation data overlap. As a general rule, data should never be used in both training
and validation when assessing a model for future usage. The current application is
somewhat unique in that there is a limited and fixed number of clusters used across all
models, while the outcome metric (the DHS WI value) associated with each cluster is
produced as an aggregate of households within the cluster.

The set of households associated with each cluster varies based on the gender classification
approach and specific gender and produces distinct outcome metrics for each model. Given



that the cluster location and associated input features are the same yet the outcome metrics
vary, this is a bit of a gray zone regarding training/validation overlap and the implications.
I.e., A female model is trained for Cluster A on households 1, 2, 3, while a male model is
also trained for Cluster A on households 4, 5, 6. Within each of those models, typical
training/validation rules still apply (i.e., 85% of clusters are randomly selected for training,
and the remaining 15% are set aside for validation). Ultimately, the results of this exercise
should be considered only as an additional data point in the broader analysis of gender bias,
and not as robust evidence of bias.

The results of the prediction accuracy largely reflect trends in the previous sections showing
a stronger connection between gender agnostic models and male specific models, and a
disconnect between both and female specific models. The model trained on all households
has a decrease in R2 3.5x greater when applied to data using only female households
compared to when applied to data using only male households (decrease from 0.973 to
0.956 vs 0.973 to 0.913). Similarly, models trained on gender specific data show notable
decreases in R2 when applied to data for the opposite gender. Models trained on male data
however, do better at prediction using the gender agnostic data than models trained on
female data.

DHS WI PCA Asset Weights

The DHS WI is generated based on the use of Principal Component Analysis (PCA) and
regression models. PCA involves taking a large number of variables and breaking them
down into a reduced number represented by a set of principal components (e.g., first
principle component, second, etc.). For the DHS WI, PCA is first used to determine weights
which reflect the importance of all assets the DHS includes in the WI. The weight value is
calculated based on how much each asset contributes to the first principal component, and
reflects the amount of variance in the data the asset explains. I.e., assets will be weighted
heavily if they explain variance within the population. If almost everyone or almost no one
owns an asset, that asset will not be weighted heavily. The weights are then used in a linear
regression model to produce the DHS WI value for each household based on asset
ownership.

Because of how PCA is used to calculate the DHS WI, the DHS WI itself is dependent on the
asset ownership characteristics of the population it is being calculated for. It is therefore
possible that minority groups or other subpopulations are not accurately represented by the
DHS WI that was designed based on the population’s characteristics as a whole. To explore
how well the DHS WI represents male and female led households, we calculated the DHS
WI separately for male and female led households.

Based on the DHS WI construction and methodology documents released by the DHS, we
attempted to replicate the DHS WI for the 2014 Ghana DHS. As the documentation is
generalized and exact construction approaches can vary for specific surveys, we were not
able to perfectly replicate the original DHS WI. The final recreation of the DHS WI had 93.7%
of households within the same quintile as the original DHS WI (Table 10). The Stata code
utilized to recreate the DHS WI will be released publicly on GitHub.

https://dhsprogram.com/topics/wealth-index/Wealth-Index-Construction.cfm


Table 10. Transition matrix comparing quintiles of original DHS WI vs recreated DHS WI.

Count Original DHS WI

1 2 3 4 5 Total

1 2442 78 0 0 0 2520

2 63 2227 68 0 0 2358

3 0 98 2385 74 0 2554

4 0 0 98 2098 83 2279

5 0 0 0 101 1935 2036

Total 2505 2403 2551 2270 2018 11747

The methodology for recreating the DHS WI was then also applied to gender-specific
subsets of the data based on the gender of the head of household. When looking at female
headed households, the DHS WI produced using data from all households will often cause
households in the lower quintiles to be classified as wealthier than in the DHS WI based only
on female households (Table 11a). These differences - over 20% of households in the
female-based DHS WI having a lower WI value in the original DHS WI (vs <5% having a
greater WI value) - are substantial enough that they could alter the relationship between
model input variables (i.e., geospatial characteristics) and the wealth index, resulting in
noticeable impacts on the models trained using the data.

Table 11a. Transition matrix for female households comparing quintiles of DHS WI
created using data from all households vs DHS WI created using data from only female headed households.

Count WI Using Female Households

1 2 3 4 5 Total

1 462 0 0 0 0 462

2 460 397 4 0 0 861

3 0 387 622 74 0 1083

4 0 0 92 632 79 803

5 0 0 0 3 591 594

Total 922 784 718 709 670 3803



Comparing the equivalent recreation of the DHS WI for male headed households, the
differences versus the DHS WI created using data from all households are much smaller
(Table 11b). The notable differences are due to underestimating the wealth of male
households in the lowest quintiles in the original DHS WI compared to the male household
based DHS WI.

Table 11b. Transition matrix for male households comparing quintiles of DHS WI
created using data from all households vs DHS WI created using data from only male headed households.

Count WI Using Male Households

1 2 3 4 5 Total

1 1735 323 0 0 0 2058

2 0 1221 276 0 0 1497

3 0 2 1402 67 0 1471

4 0 0 56 1409 11 1476

5 0 0 0 75 1367 1442

Total 1735 1546 1734 1551 1378 7944

Although less substantial than the changes seen when calculating the female DHS WI
(impacted male households in lower quintiles are <10% of data vs >20% for females), there
is still the potential that these differences would alter relationships between model input
variables and the wealth index, and thus impact the overall model.

Equivalent transition matrices were also generated based on recreating the DHS WI using
the alternative gender classification approach of whether any males were present in the
household (no males in household indicates a female household), and showed similar
patterns (Appendix Tables A1 and A2).

Using the PCA weights, we further analyzed the differences underlying the DHS WI created
based on all households, male headed households, and female headed households. For
each, we ranked assets based on the PCA weights (larger weights equals lower rank
number). We then selected all assets which were ranked in the top 20 in each of the three
DHS WI recreations (all, male, female), and calculated the difference in weight between the
female and male DHS WI weights (Table 12).



Table 12. Assets in the Top 20 of all households, male HoH, and female HoH based PCA.

PCA
Rank

< < PCA
Weight

< < <

name all male female all male female diff F vs M

Mobile telephone 18 19 12 0.152 0.144 0.177 0.034

Watch 11 14 9 0.174 0.164 0.197 0.033

Wall clock 9 9 8 0.190 0.186 0.199 0.013

Type of cooking fuel: LPG 6 6 4 0.208 0.204 0.215 0.011

Refrigerator 3 3 2 0.232 0.228 0.237 0.009

Cabinet/cupboard 8 8 10 0.190 0.187 0.196 0.009

Bank account 7 7 6 0.203 0.201 0.209 0.008

Source of drinking water:
sachet water 10 12 11 0.174 0.172 0.178 0.006

Color television 1 1 1 0.248 0.247 0.252 0.005

Bed 16 17 15 0.155 0.153 0.157 0.004

Video deck/DVD/VCD 5 5 5 0.213 0.214 0.215 0.000

Access to internet in any
device 15 16 14 0.159 0.159 0.158 -0.001

Computer/tablet computer 12 11 13 0.172 0.173 0.166 -0.007

Type of cooking fuel: wood 2 2 3 0.236 0.239 0.225 -0.013

Electricity 4 4 7 0.219 0.224 0.201 -0.023

Fifteen total assets were found in the top 20 weights across the PCA for all, male, and
female households. The assets with the largest differences in weights between the female
and male PCA were mobile telephone, watch, and electricity. Mobile telephone and watch
assets were lower ranked (larger weights) in the female PCA, while electricity were lower
ranked in the male PCA.

Examples of assets which were consistently less meaningful to the PCA include: use of
wood or wood planks for flooring, roofing, or walls; coal cooking fuel; drinking water from a
protected spring; and black & white televisions.

It is important to note that weight in the PCA is not inherently indicative of ownership rates of
an asset. As the PCA weight is reflecting the extent to which a given variable (asset) helps
explain variance in the data, larger relative weights (i.e., larger differences in weights
between the genders, not larger absolute weights for a given gender) can seem to be tied to
either very low or very high ownership rates.

For example, if every single female household owns asset X, and no male household owns
asset X, asset X would be very useful for determining what gender a household is, but would
not be useful for assessing variation in the wealth (or any other characteristics) of female
households. Since every female household owns asset X, it cannot explain any variance in
the data for female households.



As a result, assets with large weights for each gender relative to the opposite gender can
end up being assets with higher ownership rates for the opposite gender. For example,
ventilated improved pit latrines have large PCA weights for male households relative to
female households, despite being one of the assets most commonly associated with female
headed households (Table 13). Despite lower levels of use by male headed households,
ventilated improved pit latrine may be strongly associated with only a subset of male headed
households (e.g., poorer male households), yet common across all female households, and
thus more effective at explaining variance in the male household data compared to the
female household data.

Table 13. Assets most influential in Male HoH PCA (vs Female HoH PCA)

PCA
Rank

< < PCA
Weight

< < <

name all male female all male female diff F vs M

Type of toilet facility: no
facility/bush/field 13 10 18 0.170 0.177 0.147 -0.030

house 69 65 97 0.028 0.038 0.004 -0.034

Type of toilet facility:
ventilated improved pit
latrine 50 40 76 0.056 0.072 0.017 -0.055

Type of toilet facility:
ventilated improved pit
latrine shared 52 42 83 0.051 0.068 0.010 -0.058

Bicycle 39 33 108 0.071 0.094 0.001 -0.093

Conversely, bicycles have relatively high levels of male household ownership, but low levels
of female household ownership, and still have a high weight in the male household PCA
(Table 13). In this case, bicycles have a very low weight for women since far fewer female
households own bicycles, and a relatively high weight for men since many, albeit not all,
male households own them.

Table 14. Assets most influential in Female HoH PCA (vs Male HoH PCA)

PCA
Rank

< < PCA
Weight

< < <

name all male female all male female diff F vs M

Radio 28 30 17 0.111 0.100 0.148 0.048

Mobile telephone 18 19 12 0.152 0.144 0.177 0.034

Watch 11 14 9 0.174 0.164 0.197 0.033

Motorcycle/scooter 89 98 58 0.008 0.003 0.034 0.031

Main floor material: cement 36 38 28 0.086 0.078 0.108 0.030



The variation in asset weights between male and female household based PCA does not
lend itself to intuitively drawing specific insights about asset roles in households, yet
comparing the broader set of asset weights derived from gender-specific household data
with the original DHS WI asset weights can provide insight into potential gender bias. Using
the asset weights and ranks produced from data on the male and female headed
households, we calculate the discrepancy between the asset weights and ranks produced
from data on all households. This is measured by the root mean square error (RMSE) (Table
15). RMSE is an approach commonly used for evaluating the quality of predictions made
using a model against the true values, but can be leveraged more broadly, such as here, to
explore how closely two sets of values align. Lower values of RMSE indicate more similarity
between the two sets of values. The results indicate that RMSE for female households is
approximately three times greater than for male households. This would suggest that the
DHS WI created for female households is considerably more different from the default DHS
WI than the DHS WI for male households.

Table 15. Overview

RMSE PCA Weights PCA Ranks

All vs Male 0.00494 3.67486

All vs Female 0.01407 12.19829

Female:Male Ratio 2.846 3.319

Alternative Wealth Index

The DHS WI is widely used to assess economic conditions in households based on asset
ownership information collected from surveys. However, the DHS WI values are uniquely
generated for each survey and therefore cannot be compared across countries or over time.
An inherent characteristic of the DHS WI is that each time it is generated, the underlying
weights or importance of assets used to create the DHS WI can vary.

Given the methodology behind the DHS WI construction and the results seen in the previous
section exploring recreating the DHS WI for gender specific subsets of a DHS survey, it is
possible that gender specific asset bias within the surveyed population may influence the
DHS WI. An alternative approach to estimating household wealth is the International Wealth
Index (IWI) created by the Global Data Lab. The IWI utilizes a standardized formula to
calculate wealth from assets that was derived from data across many countries and surveys.
While it is still possible that broad asset bias may exist within the IWI, the more standardized
nature of the IWI may make it less likely that country specific conditions will influence (and
potentially bias) the index. The creation of the IWI itself will still be relevant and potential
biases would need to be considered (as an extreme example: if one of the fixed assets
included in the IWI have restricted access for women in a country).

https://globaldatalab.org/iwi/
https://globaldatalab.org/iwi/


Code to calculate the IWI for the 2014 Ghana DHS was implemented using a Python script
based on the IWI methodology provided by the Global Data Lab. The script will be made
publicly available for replication and use as a template for easily adapting and applying the
IWI to other countries and surveys. The resulting IWI was compared to the existing DHS WI
utilizing a transition matrix based on households being broken down into quintiles for each
wealth index. Transition matrices were generated based on using all households, only male
headed households, and only female headed households.

The results indicated that for over 50% of households - regardless of gender - there was
disagreement on the wealth index quintile when comparing the DHS WI to the IWI. Notably,
female headed households were far more likely to be classified in a poorer quintile using the
IWI than male headed households. As seen in Table 16, over 35% of female headed
households were in a poorer quintile when using the IWI. Conversely, while there were
similar overall levels of disagreement between the DHS WI and IWI for male headed
households, the male headed households were slightly more likely to be in a weather quintile
using the IWI.

Table 16. Shift in wealth quintiles using IWI compared to DHS WI.

Classification Poorer quintile Same quintile Wealthier quintile

All 27.93% 47.05% 25.02%

Male head of
household 24.39% 46.90% 28.71%

Female head
of household 35.35% 47.35% 17.30%

In addition, female-headed households were considerably more likely to be severely
reclassified (i.e., quintiles changed by more than one) using the IWI, while male-headed
households were slightly more likely to be severely reclassified as wealthier using the IWI. A
summary of quintile reclassification based on the transition matrices across all households,
female headed households, and male headed households is detailed in Table 17. The
complete transition matrices for all households, male headed households, and female
headed households can be seen in Appendix Tables A3, A4, and A5 respectively.

Table 17. Quintile difference from DHS WI to IWI (values are percent of households)

difference all female male

-3 0.14% 0.13% 0.15%

-2 4.04% 5.51% 3.33%

-1 23.75% 29.71% 20.90%

0 47.05% 47.35% 46.90%

1 20.23% 15.34% 22.56%

2 3.86% 1.78% 4.86%

3 0.82% 0.16% 1.14%

4 0.11% 0.03% 0.15%



Another way to visualize the differences between the DHS WI and the IWI is using a scatter
plot where each point represents a household, with the IWI on the y-axis and the DHS WI on
the x-axis (Figure 17). Both indices have been normalized for comparison. Points below the
diagonal line can be interpreted as being classified as poorer by IWI than by DHS WI. The
larger number of female households in red below the diagonal line represent the IWI
classifying more households as poorer than the DHS WI. The orange trend line represents
the female household data and emphasizes the divergence of the IWI from the DHS WI for
poorer households in particular.

Figure 17. Comparison of DHS WI and IWI for male and female households.

A key caveat to both the gender specific DHS WI and IWI presented here is that we do not
have an absolute or ground truth metric to say whether they are more accurate. However,
alignment of both the gender specific DHS WI and IWI in classifying lower percentile female
households as poorer than in the original DHS WI would suggest further research into the
application of wealth indices for accurately classifying households is warranted. A key
question for future research to explore is whether a standardized cross-country and
cross-survey approach would serve to minimize specific biases such as those unique to
gendered asset ownership in Ghana. Unfortunately, a deeper exploration of the true
accuracy (ground-truthed) and merits of both the DHS WI and IWI (as well as other wealth
index approaches) are beyond the scope of this work.

There is at least one notable caveat to these findings. The standardized approach for
calculating the wealth index used by the IWI may reduce country / survey specific gender
bias that the DHS WI may be subject to, yet increases dependency on a fixed and reduced
set of assets for calculating the IWI. If ownership patterns of these fixed assets are gendered
and not reflective of a gender-agnostic measure of wealth, the IWI may have inherent biases
itself. For example, a bicycle is one of only seven consumer durables considered by the IWI,
and is significantly more likely to be owned by male headed households in Ghana.



Discussion

The findings from this report are broadly indicative of a discrepancy in the effectiveness of
ML based poverty estimates between male and female households. However, there are key
limitations in what can be conclusively determined from the current analysis. In this section
we will highlight a number of these limitations and directions for future work to help address
them.

Limitations & Potential Solutions

Household Gender Classification

Approaches to classifying households by gender will inherently be limited along certain
dimensions, as the majority of households consisting of a family are typically influenced in
varying ways by both the men and women. The aim of the gender classification approaches,
and the subsequent models/analysis in which were incorporated, are therefore not intended
to provide precise gender statistics, but explore the potential for variations in trends which
can be seen when looking at the data through different approaches. The classification
approaches we have selected each provide a practical lens on household gender that may
be useful in research or applications:

● Gender of the head of household reflects the mostly widely used approach in
gender studies and therefore will be most directly comparable to existing work.

● Whether a household contains any males is a far more restrictive classification
approach, yet guarantees that households classified as female could not possibly
have male influence regardless of cultural norms or differences in how individuals
view/define the head of the household.

● Asset ownership and control are unlikely to provide truly accurate classifications of
households, yet isolating specific assets would potentially allow us to understand the
effects of specific assets (of which ownership may be notably gendered) on wealth
estimates based on asset ownership.

While each gender classification approach may provide specific value to more broadly
understanding potential gender bias in AI-based wealth estimates, it is still critical to
understand the limitations of each of these approaches as the limitations provide critical
context relevant to how results may be interpreted.

A fundamental concern is that classification based on the gender of the head of household
may obscure specific household dynamics related to key assets used in creating the DHS
WI. For example, a household led by an older male may be practically dependent on
younger female family members. Conversely, negative conditions individually faced by a
female head of household which impact her asset acquisition (e.g., lower wage than a man
in the same position) may be obscured by assets purchased by male members of her
household. Similarly, information on cultural/regional trends related to who heads a
household may be obscured or missing from a simple “head of household” based gender
classification.



Another prominent concern is the implications of household gender classification on sample
sizes. For example, restricting female households to those without any males greatly
reduces the number of households classified as female, and also may not accurately reflect
typical living conditions for women in Ghana. Use of specific assets ownership for gender
classification can also result in either very limited or very inflated household counts based on
excluding or including overlaps (i.e., a household may own both male and female assets).

To further complicate asset based classification, assets which are highly gendered in terms
of absolute ownership rates may still have very high ownership for both genders. E.g., 20%
more male headed households own a radio than female headed households, yet over 50%
of female headed households still own a radio. While there is a large difference in
gender-based ownership, it is not practical to use this asset for classification purposes.

Determining whether assets are gendered is difficult in itself and is based on two
components. The first component is based on ownership rates related to the gender of the
head of household. This is inherently limited as assets which exist within a household may
be specifically owned or controlled by someone other than the head of household. Control,
as it relates to asset ownership and decision making, is also difficult to uniformly define
across households. The second component is based on CDD-Ghana’s local context report
related to gender-specific control of assets. Unfortunately no explicit definition of
control/ownership is likely to apply to all cases. Within CDD's report, control tends to be
associated with decision making, and in general, decision making is tied to who
purchased/acquired the asset. But at the same time, the practicalities of most households
means items may be purchased as a household while either the man/woman tends to be in
control of them.

The ability to accurately classify household gender and gender specific association of asset
ownership or control is highly dependent on the data and format in which data is collected
from existing surveys. More granular surveys in which asset ownership and control, as well
as subsequent wealth metrics, are at the individual level rather than the household level
could help improve our ability to train AI models and evaluate the effectiveness of AI models
at estimating gender specific wealth. However, the realities of household dynamics will likely
mean that it is impossible to truly isolate individual wealth within a household. As such,
improvements to approaches to accurately reflect gender driven wealth trends within the
limitations of the available data will be key to advancing this line of work.

Gendered Sample Sizes

As indicated above, the size of gender specific samples used in models is highly dependent
upon the household gender classification approach and findings indicate that there is a
relationship between the number of households in a cluster and model performance. While
tests revealed that this relationship does not account for the full disparity in model
performance between male and female households, further work is needed to better
understand the implications. The initial tests we conducted artificially reducing household
counts within clusters could be expanded further across all gender classification approaches.



In addition to testing actual model performance, it may be possible to derive insight from the
underlying distributions of the DHS WI within clusters of varying household sizes.

For instance, male household models may perform better in general because their DHS WI
values are more closely correlated with full population DHS WI values. Reducing the
population size past critical thresholds for female households may simply no longer reflect a
consistent set of conditions for the population that the model is able to reasonably adapt to.

In addition to the limitations of our classification approaches, other limitations or assumptions
exist in order to practically leverage the data available. Notably, clusters may have few
households for minority gender. Across the classification schemes, particularly in the more
extreme/restrictive approaches, certain survey clusters may end up with very few
households (i.e., as few as 2) for a particular gender. This has the potential to create noisy
data which is heavily dependent on conditions of a small sample of households not truly
representative of the broader population (e.g., all female headed households in Ghana).

Feature selection and importance

Differences in feature importance between male and female models were relatively minor,
yet are potentially connected to key local context conditions. Additional research is
warranted to determine if the importance of certain features are in fact meaningful and how
they reflect actual conditions in Ghana.

As an example, one feature which showed greater importance for male headed households
was precipitation. As this could be reflective of men being more involved in the agricultural
sector, one approach to test this would explore if models trained on a subset of male
households in areas with greater agricultural activity showed even greater reliance on the
precipitation feature. Similar tests could be applied for other features such as accessibility to
cities, which was more important in female household models.

In addition, it would be worth exploring whether other geospatial features not included in this
project could be incorporated into the models to improve performance - both in general, or
for gender specific models.

Generalizability of models and use for predictions

One of the challenges in training and validating models within a single country is the limited
amount of data. This is particularly notable when working with DHS data as the households
are aggregated to clusters. Using only 427 samples (households clusters) to train and
validate a model is difficult, and significantly impairs the ability to set aside extra data for an
additional round of out of sample testing. Related work in this space has overcome this issue
while simultaneously producing more generalizable models by including data from multiple
countries. Typically models will be trained and validated on data from all but one country,
and then tested on the remaining country’s data. When exploring gender bias, there is of
course the potential that this approach may overshadow country specific gender conditions
to some extent.



Expanding on use of alternative wealth indices

We found that there are differences in the weight of specific assets considered in the original
DHS WI and recreations of the DHS WI for gender specific populations. As explained earlier
in the methodology section, this is because the DHS WI is dependent upon the asset
ownership of the population upon which it is built. To further evaluate the difference between
the original DHS WI and a gender specific WI, we would need to implement a similar
analysis as we used to evaluate model performance for the original DHS WI in this project,
but using the gender specific DHS WI as a comparison.

Similar to the gender specific DHS WI, we found that the IWI produces a sufficiently different
classification of household wealth that warrants further analysis. The IWI could likewise be
used to assess model performance and then conduct a comparison with models based on
the DHS WI. In addition, other alternative wealth indices could be considered for inclusion in
the comparison.

Conclusion

Equitable AI is still a young and evolving focal area in which there is still much to learn,
particularly within specific topic areas. As such, the insights and experiences from practical
applications and research of Equitable AI provide incredible value to the broader community
to build upon. No known research has previously explored the relationship between gender
and AI based estimates of wealth, or even considered the potential approaches for
evaluating the performance of AI models for subsets of populations traditionally used to train
wealth estimation models. Beyond the technical findings, the broader lessons learned from
this project - understanding what worked and what did not - along with how to conceptualize
and address application specific challenges, can hopefully help both encourage and facilitate
future work around Equitable AI and the use of AI based estimates of wealth.

Our current research has indicated that AI models trained on female household data
underperform relative to models trained on male household data, yet there are many aspects
left to explore. An important area for consideration is whether current household gender
classification is appropriate, and, more broadly, whether future surveys can be improved to
assess gender-specific wealth and support gender-specific AI applications in general.
Understanding what drives the differences between models trained on male and female data
is also important - can other geospatial data features used in model training improve the
performance of female models? Future research might also explore the possibility of utilizing
wealth indices other than those produced by the DHS. The methods and code we have
produced aim to provide an accessible approach for others to continue exploring these
questions and others related to the role of gender in AI wealth estimation models.
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Appendices

A1. Asset Based Gender Classification

Table S1. Gendered assets based on control, defined by CDD’s local context report. Limited
to assets which overlap with assets used in DHS wealth index.
Assets Mode of Acquisition Control
Agric suitable lands Inheritance Male
Motorcycle/ Scooter Self-purchased/ inheritance Male
Car/ Truck Self-purchased/ inheritance Male
Boat with a motor Self-purchased/ inheritance Male
Music player Self-purchased Male
Computer/Laptop Self-purchased Male
Photo camera Self-purchased Male
Animal-drawn cart Self-purchased Male
Bicycle/ Tricycle Self-purchased Male
Video deck/DVD/VCD Self-purchased Female
Sewing machine Self-purchased Female
Type of cooking fuel Self-purchased Female
Refrigerator Self-purchased Female
Freezer Self-purchased Female
Washing machine & Dryer Self-purchased Female



Table S2. Highly gendered assets based on DHS data and whether any males are in the
household, combined with CDD’s findings. Note: this used males aged 15-49 rather than 65
as discussed in the main section of the report.

Asset
% Among
All HHs

% Among
HHs w/ No
Males

% Among
HHs w/ 1+
Males

Difference
(Female-Male)

Bicycle 30.12 13.96 38.01 -24.05***

Motorcycle/scooter 12.41 3.63 16.70 -13.07***

Bank account 47.61 39.31 51.67 -12.36***

Owns land suitable for agriculture 46.18 40.80 48.80 -8.00***

Type of cooking fuel: charcoal 30.00 35.42 27.35 8.07***

Source of drinking water: public
tap/standpipe 21.38 25.22 19.50 5.72***

Type of toilet facility: ventilated
improved pit latrine 33.74 37.27 32.01 5.26***

Type of toilet facility: ventilated
improved pit latrine shared 30.95 34.31 29.31 5.00***

Table S3. Omitted assets

Asset
% Among
All HHs

% Among HHs
w/ Female
HoH

% Among
HHs w/ Male
HoH

Difference
(Female-Male)

Radio 66.40 52.26 73.15 -20.89***

Video deck/DVD/VCD 35.41 26.52 39.66 -13.14***

Main wall material: cement 51.58 57.02 48.99 8.03***

Main roof material: asbestos/slate
roofing sheets 61.72 67.13 59.13 8.00***

We did not include assets which although having a strong difference in ownership between
male and female households, either A) conflicted with CDD-Ghana’s findings on gendered
asset control (e.g., video deck) or B) were very common in all households (e.g., radio).
Notable examples of omitted assets are included in Table S3.



A2. Alternative DHS WI Transition Matrices

Table A1. Transition matrix comparing quintiles of DHS WI created using data from all households vs DHS WI
created using data from households with no adult males.

Count WI Using Female Households

1 2 3 4 5 Total

1 298 0 0 0 0 298

2 365 292 4 0 0 661

3 0 294 476 94 2 866

4 0 0 75 455 96 626

5 0 0 0 0 445 445

Total 663 586 555 549 543 2896

Table A2. Transition matrix comparing quintiles of DHS WI created using data from all households vs DHS WI
created using data from households with at least 1 adult male.

Count WI Using Male Households

1 2 3 4 5 Total

1 1985 237 0 0 0 2222

2 0 1494 203 0 0 1697

3 0 1 1647 40 0 1653

4 0 0 61 1585 7 1653

5 0 0 0 82 1509 1591

Total 1985 1732 1911 1707 1516 8851



A3. IWI Transition Matrices

Table A3. Transition matrix for all households between IWI and DHS WI

All Households
IWI Quintile

0 1 2 3 Q

DHS Wealth
Index Quintile

0 50.57% 35.74% 9.80% 3.34% 0.55%

1 38.32% 32.66% 22.14% 6.13% 0.76%

2 10.77% 26.32% 40.64% 18.88% 3.38%

3 0.34% 4.94% 29.91% 40.43% 24.38%

4 0.00% 0.38% 4.48% 24.21% 70.93%

Table A4. Transition matrix for male households between IWI and DHS WI

Male Head of Household
IWI Quintile

0 1 2 3 4

DHS Wealth
Index Quintile

0 47.25% 37.47% 10.81% 3.86% 0.62%

1 35.09% 30.34% 25.66% 7.85% 1.06%

2 8.44% 23.07% 42.03% 22.13% 4.33%

3 0.40% 5.26% 27.58% 41.24% 25.52%

4 0.00% 0.36% 4.27% 24.56% 70.80%

Table A5. Transition matrix for female households between IWI and DHS WI

Female Head of Household
IWI Quintile

0 1 2 3 4

DHS Wealth
Index Quintile

0 65.80% 27.83% 5.19% 0.94% 0.24%

1 44.07% 36.78% 15.86% 3.06% 0.24%

2 14.08% 30.92% 38.67% 14.29% 2.04%

3 0.23% 4.39% 33.95% 39.03% 22.40%

4 0.00% 0.42% 4.96% 23.37% 71.25%



A4. Local Context Report Summary

In this section we provide a summary of the local context report assembled by the Center for
Demographic Development based in Accra, Ghana. The full report can be accessed online
here.

Overview. Assets accumulation and control within households (usually consisting of a
husband, wife, children, and extended family) is varied across genders. More often than not,
the local conditions and norms favor the men. In classifying households and assets control
based on male-headedness and female-headedness, scholars have held almost common
grounds in their discussions.

● Male-headed households are more likely to accumulate more assets than female-headed
households.

● Livelihoods in a male-headed household are expected to be better than that of a
female-headed household because of the ability of the male-headed household to
acquire more assets relative to that of the female-headed household.

Decision making. Traditionally, men are considered the head of the household.

● Paying the bride price gives men control of decision-making in almost all aspects of the
household.

● In most cases, the husbands are more likely to be older than their wives and to some
extent, exercise authority over their wives, including asset accumulation and control.

● Wage earnings also contribute to the dynamics of decision-making over assets. Even
when a wife earns more a husband is often the head of household and controls assets.

● Scholars argue that men are more likely to claim ownership of assets than women, and
thus, they have greater control.

● Men are more likely to put up their assets for collateral than women would or are able to
and thereby more likely to make decisions over assets than women.

Religion. The majority of the populace follow religions in which men's power over women is
deeply entrenched.

Marriage. While single women are more independent in decision-making on asset
accumulation, married women require the consent of their husbands in most cases to make
final decisions on asset control.

● The situation worsens for married women when they do not come into the marriage with
assets

● Both men and women generally accept status-quo of male dominance. Women can
influence household decisions, yet may ultimately face varying levels of punishment for
going against their husbands.

Urban vs Rural. Urban households are more likely to own other properties and businesses
and can accumulate more durable financial assets than rural areas because they generate
more income.

https://geo.aiddata.org/assets/CDD_Ghana_Gender_Assets_Context_Report.pdf


● Rural households usually prefer to accumulate productive assets than to have financial
assets, and have a higher share in residential property, agricultural land (excluding family
land), farm equipment, and livestock,

Assets Acquisition. Assets are mainly acquired through two principal means within the
Ghanaian setting: inheritance and self-purchasing.

➢ Inheritance:
○ Inheritance turns out to be the most common form of acquiring assets in the

Ghanaian setting, often granting equal opportunity to all, irrespective of their gender.
○ Under customary law, Ghana has matrilineal and patrilineal family systems.

■ Inheritance regimes can be broken down by region based on the dominant
ethnic group.

○ Customary law disallows spouses from claiming each other's assets, and can be
biased against women.

○ Laws can create a leeway for the man's family to deprive the woman of some
portions of the assets/properties acquired in the marriage.

○ In multigenerational families, women are most likely to be handicapped in
accumulating and controlling assets.

■ usually passed through the male lineage.
○ Land is the most common asset acquired through inheritance.

■ The accumulation and control of land varies across gender and regions.
■ overall men often possess more land such as agricultural parcels, and may

benefit from greater ownership rights
■ Women, particularly in North, can be dependent on men for access to land
■ Women in matrilineal communities have more land access and control than

those in patrilineal civilizations
○ The ceremonial practice for marriage has turned out to be the commonest means of

asset accumulation by women – through dowry payment (often considered a
woman's inheritance).

➢ Self-purchase/ self-acquired assets
○ Largely influenced by education and income level with regards to what is owned and

quantities owned as well as location.
○ The positive effect of education on asset ownership is stronger for females than

males.
○ Income has a stronger positive effect on asset ownership for men than for women.
○ Income has a stronger positive effect in rural households and education has a

stronger positive effect in urban households.
○ With comparable low levels of education, male heads were relatively better than the

female heads. Possibly due to favor of investing in male education over female
education

Education, Employment, and Income. Males are more economically active, more likely to
be employed with wages, earn more per month, and less likely to be unemployed. There are
also higher rates of male literacy and comparatively higher levels of education



● Has been argued that men have more potential to accumulate assets than women based
on the various employment fields
○ More men in skilled agricultural work results from the men’s control of farmlands.

● Women (and rural residents) hold fewer active financial accounts vs men (and urban
residents)
○ Affects their purchasing power and the ability to invest in assets since they are not

exposed to bigger financial resources to provide for these assets (e.g. loans,
mortgages)

○ Culminates in their weaker financial strength and ability to secure financial and
durable assets over time.

● Scholars establish a positive correlation between education and asset accumulation.
○ People with little or no education are most likely to venture into the informal sector.
○ Far more women are service/sales workers with the motive of raising core household

income rather than accumulating lasting assets.

List of selected assets, mode of acquisition, gender control

Assets Mode of Acquisition Control Included in DHS WI
Agric suitable lands Inheritance Male Y
Greenhouse Inheritance Male
Building Self-purchased/ inheritance Male
Motorcycle/ Scooter Self-purchased/ inheritance Male Y
Car/ Truck Self-purchased/ inheritance Male Y
Boat with a motor Self-purchased/ inheritance Male Y
Music player Self-purchased Male Y
Computer/Laptop Self-purchased Male Y
Photo camera Self-purchased Male Y
Animal-drawn cart Self-purchased Male Y
Bicycle/ Tricycle Self-purchased Male Y
Television Self-purchased Male Y
Exotic dogs Self-purchased Male
Satellite dish Self-purchased Male
Bluetooth music-playing device Self-purchased Male
Bed Self-purchased Male
Art (paintings) Self-purchased Male
Gym equipment Self-purchased Male
Gold and Silver Jewelry Self-purchased/ Inheritance Female
Video deck/DVD/VCD Self-purchased Female Y
Sewing machine Self-purchased Female Y
Type of cooking fuel Self-purchased Female Y
Refrigerator Self-purchased Female Y
Freezer Self-purchased Female Y
Washing machine & Dryer Self-purchased Female Y
Cabinet/ cupboard Self-purchased Female
Cooking stove (gas/electric) Self-purchased Female
Exotic potted plants Self-purchased Female



A5. Identifying Local Organizations

CDD-Ghana identified 20 organizations in Ghana working in areas dealing with 1)
development, 2) research and technology, and 3) gender. These organizations were
identified as having potential projects which involved the use of AI, geospatial data,
household data, or gendered data, as well as analysis or other work in the same areas. They
therefore could provide insight into practical in-country applications and needs related to AI
based estimates of wealth, as well as the broader state of equitable AI and gender related
developments within Ghana.

Table A5.1 - List of Identified Organizations

Development - National and Subnational
1 Ghana Statistical Service

2 Ghana Health Service

3 National Development Planning Commission

4 Innovations for Poverty Action (IPA)

5 National Population Council

6 The Millennium Development Authority (MiDA)

7 United Nations Development Programme (UNDP)

Research & Tech Institutions
8 Ghana Tech Lab

9 Institute of Statistical Social and Economic Research, ISSER

10 National Information Technology Agency

11 AIMS Ghana (African Institute for Mathematical Sciences)

12 KNUST Responsible AI Lab

13 Kofi Annan International Peacekeeping Training Centre

14 PurpleDot Limited (Private)

15 Ashesi University (Private)

16 Penplusbytes (NGO)

Gender Specific Development
17 United Nations Population Fund (UNFPA)

18 NETRIGHT – GHANA

19 ACT Foundation

20 Women in Tech Africa

Out of the 20 organizations identified, CDD in partnership with AidData completed 6
interviews with a subset of the organizations that were A) identified as having the most
relevant work overlap with this project and B) were available for interviews. These 6
interviews were with Responsible AI Lab (RAIL), Ghana Statistical Service (GSS), the
National Development Planning Commission (NDPC), Ghana Tech Lab, National Population
Council (NPC), and Purple Dots Ltd. The interviewed organizations work with a variety of
different tools on a wide range of different projects. Many of the organizations are very
interested in utilizing AI more in their work and several of them are currently utilizing AI
programs to assist users on the ground.



For example, RAIL is using AI to enhance services for victims of GBV/IPV and they have
also produced a tool that helps palm sellers (predominantly women) verify the oil they sell in
the market. Other organizations such as Ghana Tech Lab and Purple Dot Ltd. are working
on AI tools for health care. The biggest challenge organizations listed as issues are
obtaining low-cost or free data and the purchase and maintenance of the technology needed
to run these AI programs. These organizations highlight the presence of active organizations
working in AI in Ghana with the experience and interest to collaborate on future AI projects in
Ghana.



A6. Local Workshop

On Wednesday August 16th, CDD-Ghana hosted nearly 40 participants in person for the
workshop held at their offices in Accra, Ghana. In addition to the live portion of the
workshop, a live stream was provided using a combination of YouTube and Zoom. The live
stream was attended by approximately 20 virtual participants.

Participants ranged from students at local universities such as University of Ghana to staff
from government agencies. There was also a mixture of local nonprofits, development
organizations, and private companies. In person attendance was fairly balanced between
genders, with over 40% of the participants being women.

Following opening remarks by Dr. Edem Selormey, Director of Research at CDD-Ghana,
were the main presentation sessions by the Ghana Statistical Service and AidData. Dr. Peter
Takyi Pepra, the Director of Field Operations & Coordination for the 2022 Ghana
Demographic and Health Survey, presented a first look at takeaways from the latest round of
DHS data in Ghana. Dr. Rachel Sayers of AidData then presented on the findings of our
work within the Equitable AI Challenge on evaluation gender bias in AI applications using
household survey data.

Workshop agenda

An expert panel then discussed the work presented within the context of their own
experience and with a broader lens towards the state of AI, gender, and Equitable AI within
Ghana. Panelists included Selaseh Pashur Akaho, a statistician from the GSS; Dr. Rita Udor,
a gender inclusivity officer from the Responsible AI Lab at the Kwame Nkrumah University of
Science and Technology; and Deborah Dormah Kanubala, a machine learning researcher at
Saarland University in Germany. The diverse specialization of the panel of Ghanaian
researchers ranged from survey statistics, to gender inclusivity, and applied machine
learning and AI.



Following the panel discussion, and a short break due to a power outage, the workshop
resumed with a plenary discussion which opened the floor to the audience. The conversation
touched upon the role of Equitable AI and poverty estimates in Ghana, as well as the
broader context of gender bias, the future of AI, and the importance of ongoing discussion
and efforts to ensure no minority groups are harmed by advancing technologies. Participants
were clearly deeply engaged and passionate about the topic, yet also raised critical realities
that may impede the advancement of Equitable AI in the short term.

“Until we alter our gender perspectives as a people, we are
likely to influence AI models to exhibit biases. We must
ensure that the development of AI models does not negatively
impact minorities.”

In particular, participants highlighted the influence of biased gender norms within the country
that must be addressed, and the risk of inherent bias being reflected in AI applications. The
discussion raised fundamental issues concerning people in Ghana surrounding whether a
nation struggling with more basic issues is ready for AI, and whether AI risks making things
worse. One participant questioned the extent to which AI might result in job loss, and
whether it would disproportionately impact women. Panelists emphasized the potential of AI
to improve lives, and that while it may change what jobs look like, it is unlikely that many will
lose jobs.

The conversation was ongoing as the workshop passed the allocated time, and Mavis
concluded the event with reflections upon the project and collaboration, and the future of
Equitable AI.

Photos & Recordings

The primary photos from the photographer at the event are available on CDD-Ghana’s
Flickr. A recording of the event has been made available on YouTube.

Media Coverage

Social Media

AidData and CDD-Ghana’s communications teams were actively promoting the workshop
across major social media platforms. While there was limited anticipated engagement on
these platforms, posts leading up to the event were viewed by hundreds of users.

AidData produced multiple posts on Twitter [ 1, 2, 3 ] as well as on Facebook and LinkedIn.
Similarly, CDD-Ghana produced multiple posts on Twitter [1, 2, 3] and Facebook.

https://www.flickr.com/photos/195116143@N03/albums/72177720310760118
https://www.flickr.com/photos/195116143@N03/albums/72177720310760118
https://www.aiddata.org/events/evaluating-gender-bias-in-ai-applications-dissemination-workshop
https://twitter.com/AidData/status/1691540358931398656
https://twitter.com/AidData/status/1691744184581960064
https://twitter.com/AidData/status/1691856683264344499
https://www.facebook.com/aiddata/
https://www.linkedin.com/posts/aiddata_join-us-tomorrow-at-10am-dissemination-workshop-activity-7097626906203680768-xYUf?utm_source=share&utm_medium=member_desktop
https://twitter.com/CDDGha/status/1691078401258319873
https://twitter.com/CDDGha/status/1691821754732175854
https://twitter.com/CDDGha/status/1691815580502733050
https://www.facebook.com/CDDGhana


In addition, a couple of other organizations posted or reposted on Twitter after the event and
related meetings.These included the International Centre for Evaluation and Development
and Development Impact West Africa.

Local Media

Nine representatives of local media organizations were in attendance. The media
organizations included the Ghana News Agency, Ghana Times, the Daily Graphic, the

https://twitter.com/ICED_THINKTANK/status/1691884763185872943
https://twitter.com/diwa_gimpa/status/1691417125422764032


Ghana Broadcasting Company, Ghana TV, TV3, and 3 News. Notably, the media was almost
equally represented by men and women.

Immediately following the workshop, Rachel and Mavis engaged in a Q&A session with the
media that spanned a range of topics, and resulted in local publications by the GNA, All
Africa, and Graphic Online, as well as coverage during a segment on Ghana Broadcasting
Company (GBC) Radio . The following morning, Rachel and Mavis were also interviewed on
the Ghana Broadcasting Corporation's Uniiq FM Breakfast Show in an effort to engage a
broader local audience by leveraging radio.

The media articles did somewhat focus more on the broader discussion around AI and bias
than on the specific elements of our project’s application, and some specific paraphrasing of
speakers was extrapolated to apply to much more generalized ideas than was perhaps
intended. Overall, coverage was positive and reflects both public interest in concerns around
AI and the importance of raising awareness in local areas where AI may impact
communities.

Reflections

The event went very smoothly overall, even despite a power outage, and there was very
good attendance by interested and engaged participants and media. The most resounding
success of the workshop was the level of engagement and discourse between incredibly
knowledgeable panelists and presenters, and a clearly passionate and informed audience.

A survey was provided to all participants to explore their thoughts on the workshop, the
content, and discussions. A limited number of participants responded to the survey, but
overall their responses were positive. All 7 respondents said they would recommend the
workshop to others, and 6 out of 7 said the workshop improved their understanding of the
topic. There were some responses indicating that the workshop may have been slightly
longer than needed, yet when asked to rate the workshop overall, all responses were
positive.

Follow Up Opportunities

While there were few organizations or participants who specifically leverage AI based
poverty estimates, many were active in various work streams involving household survey
data, gender data, and/or AI in general. A key short term focus of our follow up engagement
with participants will be to provide everyone on the registration list with the final report and
other dissemination materials.

The Responsible AI Lab (RAIL) at the Kwame Nkrumah University of Science and
Technology (KNUST) is one of the few groups in Ghana focusing directly on Equitable AI
that was identified during our organization interviews earlier in the project, and they were
very well represented by our panelist Dr. Rita Udor. We will aim to stay in contact with Dr.
Udor, and explore collaboration opportunities with RAIL-KNUST.

https://gna.org.gh/2023/08/cdd-ghana-launches-report-on-evaluating-gender-bias-in-ai-applications/
https://allafrica.com/stories/202308180426.html
https://allafrica.com/stories/202308180426.html
https://www.graphic.com.gh/news/general-news/activists-caution-against-gender-bias-in-use-of-ai.html
https://drive.google.com/file/d/1_1YLh4EOy5TjhW0Y4LidyjYUu9nOcLcp/view?usp=sharing
https://drive.google.com/file/d/1_1YLh4EOy5TjhW0Y4LidyjYUu9nOcLcp/view?usp=sharing


While some groups like RAIL-KNUST were expected as strong candidates for follow up
engagements, our other panelist Deborah Dormah Kanubala is someone we did not initially
know of as she is an active graduate student, yet is clearly well versed in not only the
technical aspects of AI, but also cognizant of the challenges of pursuing Equitable AI
applications.

Other familiar organizations such as the Ghana Statistical Service (GSS) are also likely
candidates for follow up on any work involving the Ghana DHS. With the forthcoming release
of the 2022 Ghana DHS, Dr. Peter Takyi Pepra’s presentation was both timely and helped to
establish a direct relationship within the GSS to reach out to in the future.

Many participants were deeply interested and engaged in the topic, and we will express our
interest in general follow up opportunities when distributing the final report and other material
from the project to workshop participants. However, a few participants indicated deeper
knowledge and applied considerations that are worth exploring directly. One example
includes a researcher who expressed practical concerns around the lack of connection
between many generic presentations on AI methods with practical follow up that can be
adopted by real world projects within Ghana.



A7. Code and Other Replication Materials

All code and finalized data, aside from data retrieved directly from the DHS survey, along
with documentation are made publicly available through a GitHub repository (or “repo”).
GitHub is a widely used platform for sharing projects containing code and data, and provides
functionality that supports users who wish to contribute to existing projects or “fork” projects
to adapt them for their own applications. In addition, a repo maintains a history of all
contributions and changes made to a project, as well as numerous other tools for including
documentation (or “ReadMes”) alongside code and data, and facilitating sharing and
replication of work.

The GitHub repository contains the base code and documentation for preparing data and
training models to generate wealth estimates using random forests. The code can be
extended and applied to any particular application of generating wealth estimates, such as
for different countries or exploring arbitrary subsets of surveyed populations. Different survey
data or input features can also be used with minimal to moderate modifications to the code,
depending on the potential data formats and preprocessing. Configuration settings and
additional analysis code specific to the Equitable AI work is included alongside the base
code.

Data processing and model training to replicate workflow for this project are detailed in the
main ReadMe within the repository. By following the instructions within, and utilizing the
“eqai_config.ini” configuration file as specified as directed, users can reproduce the outputs
and findings of our work. In addition, for users who wish only to explore the metrics produced
across the wide range of models generated without actually having to run all the models, we
provide a database consisting of all model outputs. The database, which can be accessed
as described in the ReadMe, is also accompanied by model files which will enable users to
directly load a pretrained model.

Beyond the core code and files to prepare data, train models, and store model outputs, we
have also provided numerous additional files and outputs associated with our analysis of the
models and metrics. The contents of the "equitable-ai" subfolder in the repo enabled users to
replicate all figures, tables, descriptive statistics provided in our reports and findings.

Within the “equitable-ai” folder, there are several subfolders.

● dhs_docs - provides all documentation associated with the 2014 Ghana DHS round
● figures - Contains all figures produced for the Equitable AI reports and other products
● gendered_dhs_wi_comparison - Stata code and ReadMe for reproducing the DHS

WI, and for generating gender specific versions of the DHS WI
● dhs_wi_misc - This folder was not used for any outputs or analysis, but - as it may be

relevant to others - it contains a Python based script for reproducing a more primitive
version of the DHS Wealth Index (purely PCA based, without additional refinement
steps used in the Stata code following the official DHS WI construction methodology).

● iwi_comparison - Contains Python code for 1) generating the International Wealth
Index for the 2014 Ghana DHS round (along with instructions for running and

https://github.com/aiddata/accessible-poverty-estimates/tree/main
https://github.com/aiddata/accessible-poverty-estimates/blob/main/README.md
https://github.com/aiddata/accessible-poverty-estimates/tree/main/equitable-ai
https://globaldatalab.org/iwi/computing/
https://globaldatalab.org/iwi/computing/


adapting to other surveys), and 2) comparing the IWI with the DHS WI for
households in the 2014 Ghana DHS round.

● pca_weights - Contains code and outputs for comparing the weights associated with
assets generated during the creation of the DHS WI. This compares the original DHS
WI asset weights with the gender specific DHS WI asset weights.

● predictions - We provide Python code to load a specific trained model and then run
all 2014 Ghana DHS households through the model to estimate their wealth.

All code has been tested and run on Debian and Fedora based Linux distributions, but can
reasonably be expected to run with most Python installations given proper environment
setups (as detailed in main ReadMe). Any issues, suggestions for improvements, or
contributions can be added directly via the GitHub repo.


