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Abstract 

Tracking the development of cities in emerging economies is difficult with conventional data. We show that 
satellite images of nighttime lights are a reliable proxy for economic activity at the city level, provided they 
are first corrected for top-coding. The commonly-used data fail to capture the true brightness of most 
cities. We present a stylized model of urban luminosity and empirical evidence which both suggest that 
these ‘top lights’ can be characterized by a Pareto distribution. We then propose a simple correction 
procedure which recovers the full distribution of city lights. Our results show that the brightest cities 
account for nearly a third of global economic activity. Applying this approach to cities in Sub-Saharan 
Africa, we find that primate cities are outgrowing secondary cities but are changing from within. Poorer 
neighborhoods are developing and sub-centers are emerging, with the side effect that Africa’s largest cities 
are also becoming increasingly fragmented. 

Keywords:  Development, urban growth, night lights, top-coding, inequality 

JEL Classification:  O10, O18, R11, R12 

Author Information 

Richard Bluhm 
Institute of Macroeconomics, Leibniz University Hannover 
Maastricht University, 
UNU-MERIT 
bluhm@mak.unihannover.de 

Melanie Krause 
Department of Economics 
Hamburg University,  
melanie.krause@uni-hamburg.de 

The views expressed in AidData Working Papers are those of the authors and should not be attributed to 
AidData or funders of AidData’s work, nor do they necessarily reflect the views of any of the many 
institutions or individuals acknowledged here. 

Acknowledgements  
This paper has been presented at BrownU, UEA, ERSA, ECINEQ, EEA, EPCS, GGDC anniversary 
conference, IARIW, MonashU, RCEF, RES, SEM, UAE, UBrisbane, UGold Coast, UGroningen, UHamburg, 
UKiel, ULausanne, U St. Gallen, UUmeå, UVienna, VfS AEL, and VfS Annual Meeting. We have greatly 
benefited from discussions with the participants. We would like to thank Alexei Abrahams, Gordon 
Anderson, Gerda Asmus, Francesco Audrino, Benjamin Bechtel, Chris Elvidge, Xavier Gabaix, Oded Galor, 
Martin Gassebner, Roland Hodler, Robert Inklaar, Sebastian Kripfganz, Rafael Lalive, Christian Lessmann, 
Stelios Michalopoulos, Maxim Pinkovskiy, Stefan Pichler, Paul Raschky, Prasada Rao, Nicholas Rohde, 
Dominic Rohner, Paul Schaudt, André Seidel, Adam Storeygaard, Eric Strobl, and David Weil for helpful 
comments and suggestions. We gratefully acknowledge financial support from the German Science 
Foundation (DFG). All remaining errors are ours.

�1



1 Introduction

Cities are hubs of economic activity and productivity. About 4.2 billion people, or 55% of the world’s

population, currently live in urban areas, and developing countries are urbanizing at a rapid pace (United

Nations, 2018). The African continent alone might add up to a billion people to its urban population by

2050. Many important questions in development economics and macroeconomics are intimately linked

to understanding the processes driving the concentration of people and economic activity in cities. The

lion’s share of the extant literature is oriented towards cities in advanced economies, for which ample

data are available (Glaeser and Henderson, 2017). Much less is known about the rising cities of the

21st century, who not only lack comparable data, but are undergoing such a fast-paced urbanization

that existing sources quickly become dated.

Satellite images of Earth are transforming how economists and other social scientists are tracking

human activity and its consequences.1 Nighttime images of light emissions are now an established

proxy for local economic activity (Chen and Nordhaus, 2011, Henderson et al., 2012, Donaldson and

Storeygard, 2016) and have been used in a variety of innovative applications (e.g. Michalopoulos and

Papaioannou, 2013, Hodler and Raschky, 2014, Alesina et al., 2016, Pinkovskiy and Sala-i Martin,

2016, Lessmann and Seidel, 2017, Pinkovskiy, 2017, Henderson et al., 2018).2 They have several

advantages over conventional survey-based data. Night lights are measured uniformly around the

globe, allowing us to bypass discussions over adjustments for exchange rates and regional price levels.

Another appealing feature of the most widely-used data is that they are available as an annual panel

from 1992 to 2013 at a resolution of less than one square kilometer.

Our primary objective in this paper is to establish how these data can be used to reliably track

economic activity within and across cities. A serious drawback of the standard night lights data is that

they are top-coded in larger cities. The Operation Linescan System (OLS)—a part of the US Defense

Meteorological Satellite Program (DMSP)—was designed to pick up dim light sources, but the satellites

have a limited on-board storage capacity and are based on outdated 1970s technology. They record

light intensities as integerized digital numbers from 0 DN (dark) to 63 DN (bright) and truncate all

observations above this limit to save space. The upper end of this scale is, however, easily reached

by the light intensity emitted by a mid-sized city. As a result, the recorded signal “flatlines” when the

satellites encounter bright city lights: the central business district and the outskirts of larger cities appear

to be equally bright in the truncated data.3

The scale of the truncation is sizable. In these so-called ‘stable lights’ data, the urban centers of

large, busy cities, such as New York or London appear to emit as little light as smaller American or

1For recent reviews of the related literature see Donaldson and Storeygard (2016), who illustrate the advantages of
remotely sensed data in general, and Michalopoulos and Papaioannou (2018), who focus on the night lights data in particular.

2Nighttime lights have also revitalized the aid effectiveness literature, enabling it to focus on the local impact of aid projects
(see Dreher and Lohmann, 2015, Bluhm et al., 2018, Civelli et al., 2018, Isaksson and Kotsadam, 2018).

3The data are known to suffer from a variety of other problems, such as bottom-coding (Jean et al., 2016), overglow or
blooming (Abrahams et al., 2018), and geolocation errors (Tuttle et al., 2013). The new Visible Infrared Imaging Radiometer
Suite (VIIRS) has considerably improved sensors, including a day-and-night band which records light intensity after midnight
since late 2011. While these data will become more important in the future, the DMSP-OLS series is the only available series
covering the historical period from 1992 to 2013. We use the VIIRS data for robustness checks in Online Appendix F.
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British towns. Our estimates instead suggest that they are more than an order of magnitude brighter

than recorded in the original data. While top-coding tends to affect developed countries more than

their less-developed counterparts, we show that it is pervasive and distorts the ranking of cities within

and across countries. Nearly all primary cities in Africa and mid-sized cities in Asia hit the top-coding

threshold. Large agglomerations in developing countries, such as Johannesburg or New Delhi, are

affected particularly strongly.

In this paper, we analyze the global distribution of city lights at the pixel level, develop a new

procedure to recover the details of inner city activity, and then study the evolution of cities in Sub-

Saharan Africa. We make three distinct contributions to the literature:

First, we argue that it is natural to characterize the distribution of the world’s brightest lights, which

we dub ‘top lights’, by a Pareto distribution. We provide theoretical and empirical evidence supporting

this claim. In terms of theory, we present a stylized model of light emissions from cities, combining

standard assumptions on the evolution of city sizes (e.g. Zipf’s law) with regularities in urban scaling.

The model gives rise to a power law in light emissions above a certain threshold. Our empirical tests

based on auxiliary satellite data also strongly favor a heavy-tailed Pareto distribution in top lights with

an inequality parameter comparable to top incomes or wealth in the US (e.g. see Atkinson et al., 2011).

Our second contribution is methodological. Building on the Pareto property of top lights, we develop

a top-coding correction for the truncated data. The correction uses a geo-referenced ranking method

at the pixel level combined with auxiliary observations from less frequently available satellites. Based

on this method, we present a new annual panel of nighttime lights over the entire period from 1992

to 2013.4 The correction makes a substantial difference in virtually all major cities. The top 4% of

pixels—the average share of pixels which we correct globally—account for 32% of the total brightness

observed on Earth. This is nearly double their original share, underlining the contribution of big cities to

global economic activity. As a result, the spatial distribution of economic activity turns out to be much

less equal.

Figure 1 illustrates the problem and the effectiveness of our solution. It shows that the stable lights

data are unable to differentiate among the light intensities originating from different inner-city locations

in New York, London, New Delhi or Johannesburg. Across these four major cities, the average light

intensity differs little and the sum of light in each city is dominated by the urban extent. After our

correction, we can clearly identify urban cores which are much brighter than the outskirts. This carries

over to other subnational aggregates. The corrected data also turn out to be a better predictor of

regional economic activity in rich and densely populated countries, such as Germany.

Third, we use this new data to analyze the relative growth rates and internal structure of cities in Sub-

Saharan Africa. The subcontinent is still the world’s poorest region and urbanizing at a considerably

lower level of development than other regions have in the past (Glaeser, 2014). Economic activity in

Sub-Saharan Africa is heavily concentrated in primate and coastal cities due to a combination of factors,

including high transport costs (Storeygard, 2016), outward-oriented colonial infrastructure (Jedwab and

Moradi, 2016, Bonfatti and Poelhekke, 2017), urban bias (Lipton, 1977, Ades and Glaeser, 1995), the

4Our corrected images can be downloaded from www.lightinequality.com.
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Figure 1 – Selected cities in 1999, stable lights and corrected lights
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(b) London
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(c) New Delhi
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(d) Johannesburg
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Notes: Comparison of the light intensities (DN) recorded by the stable lights and our corrected lights in four major cities.
The left panel show the light intensity along a longitudinal transect through the brightest pixel in each city. The middle
panel shows a map based on the stable lights data from satellite F121999. The right panel shows the same map using
the corrected data presented in this paper. Both data have been binned and the color scales were adjusted so as to be
comparable. Dashed lines indicate the transect path.
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limited reach of national institutions (Michalopoulos and Papaioannou, 2014), climate change (Barrios

et al., 2006), natural resource booms (Gollin et al., 2016), and the urban mortality transition (Jedwab

and Vollrath, 2018). This structure is neither optimal nor static. On the one hand, excessive primacy

in the city size distribution has been linked to the prevalence of slums and slow economic growth

(Henderson, 2003, Castells-Quintana, 2017). On the other hand, recent studies suggest that Africa’s

secondary cities might be gaining ground vis-à-vis primate cities and playing an important role in poverty

reduction (Henderson et al., 2012, Christiaensen and Todo, 2014, Christiaensen et al., 2016, Fetzer

et al., 2016). Official numbers remain elusive though, so it remains an open question if secondary cities

in Africa are in fact rising.

Our application shows that Africa’s largest cities are maintaining their dominant position but are

changing from within. Primary cities in Sub-Saharan Africa were growing faster than secondary cities

over the period from 1992 to 2013, suggesting they are continuously absorbing growing populations

in informal settlements (in line with Jedwab and Vollrath, 2018). However, as these cities grow, we

observe two distinct developments: light inequality within the initial city limits narrows and the inner-city

distribution of light becomes more fragmented. We interpret this finding as an indication that public

services are being expanded throughout cities, while increasing fragmentation implies the formation of

sub-centers with a continued lack of connectivity to other neighborhoods. Disconnectedness and long

travel times, in turn, limit productivity and economies of scale (Lall et al., 2017, Venables, 2017). Both

of these findings would have been difficult to establish without the correction developed in this paper, In

fact, the stable lights data indicate that secondary cities outperform primate cities during the period of

study, and they offer little insight into the distribution of economic activity within cities.

More broadly, this paper takes on the challenge of linking the pixel-level distribution of economic

activity as observed from high resolution satellites to economic theory and empirical laws in urban

economics. We argue that this approach leads to a better understanding of the features these data

should have and at what scale they will be particularly useful. This perspective shows that the influence

of top-coding is small when lights are aggregated to the country level but then rises steeply as the size

of the unit of observation decreases. Moreover, as we demonstrate below, the impact of top-coding

increases over time as countries and cities develop. By providing a solution to this problem, we hope to

further encourage researchers to use these data in innovative ways.

The remainder of this paper is organized as follows. Section 2 provides some background on the

nighttime lights data and the extent of top-coding around the world. In Section 3 we present theoretical

and empirical evidence in favor of a Pareto distribution in top lights. Section 4 outlines our correction

procedure. Section 5 contains the application of our top-coding corrected data to African cities.

Section 6 concludes. An Online Appendix contains the accompanying material, such as additional

theoretical results, supplementary details on the data and summary statistics, a benchmarking exercise

with German regional data, and a battery of robustness checks.
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2 Top-coding around the world

The DMSP-OLS satellites have been orbiting the earth for several decades with the primary purpose

of detecting clouds. As a byproduct, they measure night lights in the evening hours between 8:30 and

10:00 pm local time around the globe every day. The recorded data are pre-processed by the National

Geophysical Data Center at the National Oceanic Administration Agency (NOAA) and averaged over

cloud-free days.5 The result are images of annual ‘stable light’ intensities from 1992 to 2013 for every

30 by 30 arc seconds pixel of the globe (about 0.86 square kilometers at the equator).6

We cannot use the truncated stable lights data to gauge the extent of top-coding. Fortunately,

for seven years, additional satellites were orbiting Earth with sensor settings that were less sensitive

to light. NOAA generates a series of ‘radiance-calibrated’ lights by combining the stable lights data

from normal flight operations with auxiliary data obtained from these low amplification sensors (Elvidge

et al., 1999, Ziskin et al., 2010, Hsu et al., 2015). The resulting series is free of top-coding and has

no theoretical upper bound.7 The radiance-calibrated data can be used directly for cross-sectional

analyses. Henderson et al. (2018), for example, use the 2010 version of this data in their study of the

global spatial distribution of economic activity. They are, however, only of limited use for comparisons

over time. Apart from their sparse temporal coverage, the radiance calibration process introduces a

non-trivial amount of noise.8

While the literature typically aggregates the pixel level data to some study area of interest (e.g. grid

cell, city or region), we conduct our analysis at the native resolution of 30 arc seconds to avoid averaging

over top-coded areas. On the global scale, this is a formidable task.9 To ease the computational burden,

we conduct large parts of the analysis with a spatial random sample of 10% of pixels within all countries

that have a landmass larger than 500 km2 (but later apply the correction to the full data). The sample

contains more than two million pixels per year located in 194 countries or territories.

We still have to define where top-coding begins before we can assess its impact. Since the scale

goes up to 63 DN, it seems natural to assume that this would be the appropriate threshold. There are,

however, compelling technical reasons suggesting that the threshold should be much lower. Each value

we observe in the annual data has already been averaged several times.10 In fact, our analysis shows

5This is done to remove observations of cloudy days and sources of lights which are not man-made, such as auroral lights
or forest fires. This process removes a lot of dim light sources. NOAA also makes a series of unfiltered lights available, which
we later use for the delineation of urban extents.

6In our analysis, we always exclude areas close to the polar zones (65 degrees south and 75 degrees north latitude)
known to be influenced by ephemeral lights and remove areas affected by gas flaring.

7Note that in spite of calibration issues, Hsu et al. (2015, p. 1865) point out that, within the same year, the “DNs below
saturation of the Stable Lights product and DN_EQs of merged fixed-gain imagery can be directly compared to each other.”

8Online Appendix A provides summary statistics of the stable lights and radiance-calibrated data over time and discuss
technical reasons for the large fluctuations we observe in the latter. The ranks of pixels in the radiance-calibrated data are
considerably more stable over time than their absolute values—a feature we later exploit in our pixel-level correction.

9Every image contains more than 700 million pixels, about a third of which are on land and a half of which are lit.
10Abrahams et al. (2018) provide a detailed explanation of how the DMSP-OLS satellites process the data before

transmitting them to Earth, including how this leads to geolocation errors, blurring, and top-coding. The satellite first truncates
individual pixels at a much finer resolution and then aggregates those to a coarser resolution. Each night the origin shifts a bit,
recreating a finer resolution. Finally, these data are aggregated and averaged again at NOAA when the annual composites
are created.
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Table 1 – Summary statistics of global lights in 2010

World USA Brazil Israel South Africa China Netherlands

Panel a) Stable lights (from 0 to 63 DN)

Mean 17.55 18.35 17.97 31.61 15.16 17.72 35.11
Standard deviation 15.35 16.90 15.45 21.49 15.29 15.50 16.09
Maximum 63.00 63.00 63.00 63.00 63.00 63.00 63.00
Spatial Gini 0.4258 0.4486 0.4165 0.3858 0.4604 0.4260 0.2637
Pixels 2,154,889 427,922 60,310 2,060 18,369 165,521 6,549

Panel b) Radiance-calibrated lights (from 0 to∞ DN)

Mean 19.04 23.14 19.76 46.29 15.18 19.97 37.83
Standard deviation 44.35 53.42 41.76 82.70 29.99 46.71 44.08
Maximum 2109.67 1710.59 646.84 914.14 575.22 1862.04 435.63
Spatial Gini 0.6045 0.6613 0.5995 0.6505 0.5941 0.6093 0.4880
Pixels 2,154,889 427,922 60,310 2,060 18,369 165,521 6,549

Panel c) Comparison of top-coded pixels at same locations

Share top-coded 0.0576 0.0847 0.0588 0.2447 0.0387 0.0597 0.1709
Radiance-cal. mean 142.05 153.77 143.36 135.70 113.27 143.96 107.92

Notes: The table reports summary statistics using the stable lights in Panel (a) and the radiance-calibrated lights in
Panel (b). Panel (c) compares both sources at the pixel level. All three panels are based on a 10% sample of all lit
pixels, where each pixel is 30 × 30 arc seconds. The stable lights data are averaged across the whole year, while the
radiance-calibrated data come from satellite F16, which recorded these data from January 11 to December 9, 2010.

that many pixels with DNs of 62, 61, down to the mid-50s, are subject to implicit top-coding and should

be considerably brighter than they are recorded in the data (see Online Appendix B). NOAA even

suggests that the first—albeit faint—influence of top-coding starts at much lower values.11 Throughout

this paper, we conservatively set the top-coding threshold to 55 DN in order to not overstate its impact.

Note that our correction approach will work with any sufficiently high top-coding threshold.

Table 1 compares the stable and radiance-calibrated lights across the globe in 2010—the latest

year where both data sources are available. The first column already shows that the difference in scale

is striking. The brightest radiance-calibrated pixel in our sample is more than 30 times brighter than

the end of the stable lights scale. This is reflected in a standard deviation which is three times higher

and a spatial Gini coefficient of inequality in lights which differs by 18 percentage points. In 2010,

about six percent of all stable lights pixels are top-coded, while their unsaturated counterparts are—on

average—more than twice as bright.

Top-coding affects all countries but not uniformly. Countries which are i) highly developed, ii)

small and iii) urbanized are more strongly affected by top-coding than others, but there is substantial

heterogeneity. The remaining columns of Table 1 document this diversity in a selection of countries.

Larger middle income countries, like China, Brazil or South Africa, have a top-coding share comparable

to the world average. Mature economies of different sizes and population densities, such as the

US, Israel or the Netherlands, have greater top-coding shares from 8% up to 25%. In Israel and

11Since “the OLS does onboard averaging to produce its global coverage data, saturation does not happen immediately
when radiance reaches the maximum level. On the contrary, as the actual radiance grows, the observed DN value fails to
follow the radiance growth linearly, causing a gradual transition into a plateau of full saturation” (Hsu et al., 2015, p. 1872).
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Figure 2 – Share of top-coded pixels and country characteristics
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(b) Log population density
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Notes: Illustration of the systematic bias introduced by top-coding. The data are a 10% representative sample of all
non-zero lights in satellite F182010. GDP and population data are from the World Development Indicators.

the Netherlands, a high average light intensity coupled with a high incidence of top-coding in the

stable lights data generate such an artificially low spatial Gini coefficient that it rises by more than

20 percentage points in the radiance-calibrated data. Figure 2 illustrates these patterns across all

countries in the sample and highlights the exceptions. For example, the overwhelming majority of pixels

in high income, high density city states, such as Singapore, Hong Kong, or Bahrain, are top-coded. Top-

coding is also particularly pronounced in low income countries with a low average population density

but large primate cities, such as Egypt. The incidence of top-coding is thus a complex function of the

spatial equilibrium, that is, the size, number and location of cities in each country.

3 A Pareto distribution in top lights

Our correction approach rests on the claim that a Pareto distribution is a reasonable description of

top lights. The Pareto distribution is an often-found empirical feature of data used in physics, biology

and many other sciences (see Newman, 2005), including the distribution of top income or wealth (e.g.

Piketty, 2003, Atkinson et al., 2011) and the size distribution of cities as delineated via night lights (Small

et al., 2011). Yet, it has not been established for the upper tail of the distribution of night light intensities

so far. We approach this issue in two ways. We first present a tractable model of light intensities within

and across cities, showing that the density of top lights at the pixel level is Pareto, or can at least be

closely approximated by a Pareto density. We then return to the radiance-calibrated data and subject

it to a battery of empirical tests to investigate whether top lights can be described by a power law and

settle on a parameter estimate. Note that throughout this paper, we focus on light intensity, which is

analogous to the product of population and GDP per capita.
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3.1 A stylized model of inner city lights

Our starting point is the size distribution of cities. It is well known that combining Gibrat’s (1931) law of

homogeneous growth of cities with a lower bound of city sizes leads to a Pareto or Zipf distribution of

large cities (Gabaix, 1999, Eeckhout, 2004). Zipf’s law predicts that city ranks are inversely proportional

to their size; for instance, the biggest city in the U.S. (New York) has twice the population of the second-

ranked city (Los Angeles) and three times the population of the third-ranked city (Chicago).

Numerous studies have provided empirical evidence for this regularity based on U.S. cities or

metropolitan areas (Gabaix and Ioannides, 2004, Rozenfeld et al., 2011, Ioannides and Skouras, 2013).

Despite heterogeneity in the rank-size parameter in other countries (Rosen and Resnick, 1980, Soo,

2005), it is generally considered a good approximation of the size distribution of large cities (Luckstead

and Devadoss, 2014) and evidence in its favor becomes stronger when cities are defined as “natural”

agglomerations as opposed to administrative boundaries (e.g. see Small et al., 2011, Jiang and Jia,

2011).

Assumption 1. The size distribution of big cities in terms of their population x is Zipf, i.e. a Pareto

distribution with shape parameter η = 1 above some threshold xc.

The CDF of the number of cities with population x is

F (x) = 1−
(xc
x

)η
=

∫ x

xc

η
xηc
xη+1

dx =

∫ x

xc

xc
x2

dx. (1)

We are interested in the size of cities in terms of their area, not their population. The urban allometry

literature (Stewart, 1947, Jones, 1975), which deals with the scaling of human-made structures within

cities, links the two quantities in the following way:

Assumption 2. The population x and the area s of a city are proportional, i.e. x ∼ sφ.

It is typically assumed that 1 < φ < 2, so that larger cities not only spread out on the plane by converting

the surrounding agricultural land but also grow in terms of height (Batty and Longley, 1994). Bettencourt

(2013), for example, motivates scaling laws based on a network theory of human interactions using the

parameter value φ = 1.5.

To derive the distribution of individual pixels y, we require an assumption on the shape of cities.

The standard assumption in the workhorse model of urban economics is monocentricity (Mills, 1967,

Amson, 1972, Desmet and Rossi-Hansberg, 2013).

Assumption 3. Cities are monocentric and of circular shape. They consist of rings of unit width from

the center to the outskirts.

Depending on its area s and therefore its population x, each city has r = π−1/2x1/(2φ) rings.12

12For simplicity of exposition, we suppress the proportionality constant in x ∼ sφ and assume x = sφ.
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Integration by substitution yields the CDF of the number of rings per city13

F (r) = 2φxcπ
−φ
∫ r

r̃
r−2φ−1dr =

0 for r < r̃

1− xcπ−φr−2φ for r >= r̃
(2)

with r̃ = π−1/2x
1/(2φ)
c . Its density

f(r) = xcπ
−φr1−2φ for r >= r̃ (3)

follows a power law with a shape parameter 2φ− 1 > η = 1 for φ > 1.

The distribution of rings has fewer extreme values than the distribution of city sizes in terms of their

population.

Each city with r rings consists of πr2 rectangular pixels of unit size. The pixels are located at

distance d from their respective city center. There are two opposing effects governing how the number

of pixels depends on this distance: i) within a given city, the number of pixels increases linearly with d

because rings farther from the center contain more pixels, and ii) the larger the distance d from the city

center, the fewer cities of that size are left, namely only the cities with r ≥ d rings.

Dividing the absolute amount of pixels at each distance d by the total number of pixels yields their

density

f(d) =

2π φ−1φ x
−1/φ
c d for d < d̃

2π1−φ φ−1φ x
1−1/φ
c d1−2φ for d ≥ d̃

(4)

with d̃ = π−1/2x
1/(2φ)
c .14

To derive the density of luminosity f(l), we require a last assumption on how light intensity within a

city varies with the distance to the center d. We resort to standard models of population density, since

differences in light intensity within countries are mostly driven by population (Henderson et al., 2018).

A popular choice in the literature is the negative exponential function, that is, p(d) = P0 exp(−γd)

where p(d) is the population density at distance d from the city center, P0 ≥ p is the density at the

center, and γ > 0 is a decay parameter so that the city periphery is more sparsely populated or, in our

case, lit. The negative exponential can be motivated on the basis of the standard Alonso-Muth-Mills

model (Brueckner, 1982). Empirical studies typically find γ ≈ 0.15 (Bertaud and Malpezzi, 2014). An

alternative to the exponential distribution is the inverse power function, which was originally proposed

for gravity models of traffic flow (Smeed, 1961, Coleman, 1964, Batty and Longley, 1994). It is defined

as p(d) = P0d
−a with d > 0 and shape parameter a > 0.

Both functions are qualitatively similar for intermediate distances. The inverse power function differs

from the exponential function in the city center, where it has higher and more sharply declining values,

as well as in the outskirts, where it predicts a moderately higher density. A greater concentration at

13Online Appendix C derives this result.
14Online Appendix C derives this result.
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the center makes the inverse power function particularly suitable for business floor-space models (as

recommended by Zielinski, 1980). At the same time, its tail is known to fit the urban fringe well (Parr,

1985). Since we are interested in lights rather than population density, we would like to capture both

the very bright central business districts in most cities and the more dimly lit but significant suburban

sprawl in the outskirts, which typically features prominently in the footprint of city lights (e.g. see Small

et al., 2011).

Modeling inner city light densities with an inverse power function better reflects the light gradient

and turns out to be analytically appealing. Hence, it serves as our baseline case. Note that using the

negative exponential function also leads to an expression for the distribution of top lights which (under

plausible conditions) can be approximated by a Pareto density.15

Assumption 4. Within cities, the light density l(d) follows an inverse power function l(d) =

L0d
−a for d > 0 with L0 > l as the maximum luminosity at the center and a > 0 as the decay parameter.

Applying the variable transformation from the inverse power function to the pixel density in eq. (4)

yields

f(l) =


2π1−φ φ−1φ x

1−1/φ
c

(
L0/l

)(1−2φ)/a
for 0 < l ≤ l̃

2π
φ− 1

φ
x−1/φc︸ ︷︷ ︸

c

(
L0/l

)1/a
for l̃ < l ≤ L0,

(5)

where l̃ = L0π
a/2x

−a/(2φ)
c .

Restricting our attention to the upper part of the light distribution from l̃ onwards, we can establish

our key result:

Result 1. Based on assumptions 1–4, top lights above threshold l̃ follow the Pareto distribution f(l) =

c
(
L0/l

)1/a
with shape parameter 1/a.

Using a grid-search, we find that for a = 0.7 the inverse power function comes closest to the

negative exponential function of the consensus parameter γ = 0.15.16 This, in turn, implies a Pareto

shape parameter around one and a half.

In sum, a limited set of four assumptions allows us to analytically derive a Pareto distribution in top

lights, with shape parameter 1/a, maximum luminosity L0, and a multiplicative constant. We believe

that this is an important insight, even though the model is very stylized to remain tractable. Note that

our correction procedure later on only relies on the Pareto property and does not require any of the

simplifying assumptions, such as monocentricity or a particular population density gradient. In fact,

part of our application below investigates how sub-centers have been forming in African cities.

There are alternative ways to characterizing the distribution of top lights. We could, for instance,

consider the truncation purely as a statistical issue of tail probabilities and use extreme value theory to
15Online Appendix C derives this result.
16The curve-fitting was conducted on the domain for d from 1 to 50, minimizing the squared error between the negative

exponential function with γ = 0.15 and the inverse power function with a ∈ [0.05, 2].
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derive their distribution. Reassuringly, this approach also points towards a Paretian distribution of top

lights (see Online Appendix D).

3.2 Empirical tests

Empirical tests for a Pareto tail were popularized in economics by literature on top incomes (e.g. Piketty,

2003, Atkinson et al., 2011) as well as city size (e.g. Rosen and Resnick, 1980, Gabaix, 1999, Gabaix

and Ioannides, 2004, Rozenfeld et al., 2011). These tests usually exploit particular properties of the

Pareto distribution.

Recall that data y which is Pareto distributed above a certain threshold yc has the probability density

function, f(y) = αyαc y
−α−1, where α is the relevant shape parameter and only takes on positive values.

The survival function, 1 − F (y) = (yc/y)α, gives the probability that the random variable Y is larger

than the given value y. This maps directly to our model from the previous section, only that we now

denote the light intensity at the pixel level by y and the shape parameter by α = 1/a to simplify the

exposition.

Visual inspection: Following Cirillo (2013), we first visually check whether our data are Pareto

distributed, before estimating shape parameters that are only meaningful if this condition is fulfilled.

We use the seven radiance-calibrated satellites to analyze the shape of the tail missing in the stable

lights data. Figure 3 shows a discriminant moment ratio plot with the coordinate pair of the coefficient

of variation (i.e., standard deviation divided by the mean) on the x-axis and skewness on the y-axis

(Cirillo, 2013). Each parametric distribution has its particular curve of feasible coordinates, so that the

relevant part of the plane can be divided into a Pareto area, a lognormal area, and a gray area possibly

belonging to both. This type of plot provides a more reliable indication of the Paretian nature of the data

than more traditional graphical devices (such as Zipf plots shown in Online Appendix E).

The visual evidence in favor of a Pareto distribution is strongest for higher thresholds. For the top

4% of pixels in panel (a), all but one satellite are located in the area of indeterminacy.17 This ambiguity

mirrors similar findings in the city-size literature, where both the Pareto and the log-normal with a large

standard deviation generate tails which are virtually indistinguishable (Eeckhout, 2004, 2009).18 For

smaller percentages, such as the top 1% in panel (b), the evidence in favor of a Pareto distribution

becomes much stronger. All but one satellite are in the Pareto area, far from the lognormal area and

those of other thin-tailed distributions.

17The only exception is satellite F16 in 1996 which is based on considerably fewer cloud-free overpasses than later years.
It is the earliest and dimmest of the radiance-calibrated products. Its highest values are far below those in subsequent years
and the data contain many ties. Online Appendix A contains the relevant summary statistics for the radiance-calibrated data.

18It is well-established in the literature on city sizes and top incomes that the Pareto distribution is often only a good
representation for the very top of data, with a moderately decreasing fit as the threshold decreases. Our data suggest that a
Pareto distribution of top lights remains a good approximation down to the top 10% of the data. This is more than sufficient
for our purposes, since we only consider 3% to 5% of all pixels to be top-coded in any given year. Indeterminacy vis-à-vis the
lognormal occurs is common in this literature as well, since “the tail of a lognormal is indistinguishable from the Pareto under
certain circumstances, [so that] the researcher who is interested in the tail properties of a size distribution can choose which
one to use” (Eeckhout, 2009).
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Figure 3 – Discriminant moment ratio plots
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Notes: The panels show discriminant moment ratio plots (Cirillo, 2013). The input data are a 10% representative sample
of all non-zero lights in the radiance-calibrated data at the pixel level, where each pixel is 30× 30 arc seconds.

We take a closer look at the issue of lognormal versus Pareto in Online Appendix E. We conduct

several goodness-of-fit tests, where we compare the empirical distribution of the radiance-calibrated

data to the best-fitting theoretical distribution. The findings are unambiguous. The Pareto distribution

mimics the distribution of top lights much better than the lognormal (with R2s close to unity). Hence,

we conclude that our data are best characterized by a heavy-tailed Pareto distribution.

Log-rank regressions: Log-rank regressions are a popular approach to estimating the Pareto shape

parameter and firmly rooted in urban economics. They are based on the following approximation.

For Pareto-distributed observations yi, i = 1, ...N , with the survival function given above, we have

rank(yi) ≈ Nyαc y−αi , or, in logarithms log rank(yi)− logN ≈ α log yc−α log yi. Gabaix and Ibragimov

(2011) show that directly estimating this relationship systematically underestimates the true coefficient

and standard error. However, once the ranks are shifted by minus one-half and the standard errors are

adjusted, rank regressions consistently estimate the parameters of interest and turn out to be relatively

robust to deviations from power laws.

Table 2 reports the corresponding results. We separately estimate the Pareto shape parameter for

each of the radiance-calibrated satellites and for the top 5% to 1% of the data. The point estimates are

relatively stable for the top 3% to 5% of lights—approximately the range of shares we will later replace

each year—and then rise as smaller percentages are considered.19 The last column reports the simple

19In theory, with Pareto-distributed data, conducting the estimation with the portion of the distribution above a higher
threshold yhc > yc should lead to the same estimated α. In practice, this will often not hold exactly and the results for tail

13



Table 2 – OLS rank regressions

Year 1996 1999 2000 2003 2004 2006 2010 Average

Panel a) Top 5%

Pareto α̂ 1.3122 1.2993 1.2471 1.4482 1.4484 1.4790 1.4453 1.3828
(0.0060) (0.0054) (0.0054) (0.0065) (0.0063) (0.0066) (0.0062) [0.0932]

Observations 96,685 116,858 106,914 100,095 106,899 99,487 107,745 –

Panel b) Top 4%

Pareto α̂ 1.3514 1.4000 1.3594 1.5890 1.5837 1.6250 1.5963 1.5007
(0.0069) (0.0065) (0.0066) (0.0079) (0.0077) (0.0081) (0.0077) [0.1236]

Observations 77,348 93,484 85,482 80,075 85,489 79,590 86,196 –

Panel c) Top 3%

Pareto α̂ 1.4270 1.5665 1.5444 1.7667 1.7876 1.8423 1.8330 1.6811
(0.0084) (0.0084) (0.0086) (0.0102) (0.0100) (0.0107) (0.0102) [0.1654]

Observations 58,011 70,115 64,111 60,058 64,134 59,692 64,647 –

Panel d) Top 2%

Pareto α̂ 1.6714 1.8614 1.9314 2.0737 2.0976 2.1751 2.2160 2.0038
(0.0120) (0.0122) (0.0132) (0.0147) (0.0143) (0.0154) (0.0151) [0.1932]

Observations 38,673 46,742 42,740 40,039 42,756 39,794 43,097 –

Panel e) Top 1%

Pareto α̂ 2.2300 2.4350 2.4470 2.5914 2.5046 2.7075 2.8641 2.5399
(0.0227) (0.0225) (0.0237) (0.0259) (0.0242) (0.0271) (0.0276) [0.2052]

Observations 19,337 23,373 21,372 20,020 21,377 19,898 21,551 –

Notes: The table reports the results of OLS rank regressions with log (rank(yi)− 1/2) − logN as the dependent
variable. Asymptotic standard errors computed as (2/N)1/2α̂ are reported in parentheses (see Gabaix and Ibragimov,
2011). The data are a 10% representative sample of all non-zero lights in the radiance-calibrated data at the pixel level,
where each pixel is 30 × 30 arc seconds. The last column reports the point average of the seven satellites and its
standard deviation in brackets.

average of the estimated coefficients. Somewhat remarkably, the average Pareto shape parameter is

about one and a half for the top 4% of lights—not far from our model-based guesstimate. Moreover,

averaging all 21 coefficients in panels (a) to (c) also yields a central estimate of about one and a half.

Note that there is also little variation over time at the lower thresholds, apart perhaps from a small

discontinuity in the early 2000s. Our range of parameter estimates implies inequality comparable to

the top tail of the U.S. income or wealth distribution (Piketty, 2003, Atkinson et al., 2011). Top lights

are considerably more equally distributed than city sizes, just as predicted by the model in the previous

section.

We provide an array of additional robustness checks in Online Appendix E and F. Our main findings

are robust to i) using the Hill estimator instead of OLS rank regressions, ii) estimating unrestricted

rank regressions, which are another way of testing for a Pareto distribution, and iii) using top-coding

free data from the Visible Infrared Imagining Radiometer Suite (VIIRS) satellites, which are currently

only available for 2015. The VIIRS satellites are technologically superior and recorded at a much finer

resolution. Reassuringly, they are either as indicative of a Pareto tail in top lights as the radiance-

regressions are known to depend on the precise threshold used (see for instance Rosen and Resnick, 1980).
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calibrated data, or provide even stronger evidence in its favor, such as linear Zipf plots.20

4 Correcting for top-coding

We propose a simple correction procedure inspired by the methods used in the top incomes literature

(Piketty, 2003, Atkinson et al., 2011). All lights below the top-coding threshold are unaltered, while

those above are replaced by a Pareto-distributed counterpart. An appealing feature of this approach is

that it keeps the overwhelming majority of the data intact and replaces only a small but highly influential

fraction of pixels.

Our theoretical arguments and empirical tests strongly suggest a Pareto parameter around one and

a half. Recall that a plausible parameterization of our model implies α = 1/0.7 ≈ 1.43 and our empirical

estimates are centered on one and a half. We use this fixed value as a rule-of-thumb parameter. Of

course, our procedure is not predicated on a particular value, nor does it require the parameter to be

constant over time. However, we do not detect an unambiguous trend indicating that the distribution

of top lights has become more equal over time. As will become clear shortly, assuming a constant

parameter value still allows for significant variation over time as particular pixels i) cross the top-coding

threshold and ii) achieve a higher rank vis-à-vis other pixels. Cities can thus become brighter in absolute

terms and grow relative to other cities after the correction.21

Our preferred correction approach is a pixel-level replacement in which we directly substitute the

top-coded lights by their corresponding Pareto quantile. Correcting the raw data has the advantage

that they can then be flexibly aggregated to the unit of interest. Another option is to analytically correct

the relevant summary statistics, such as mean lights and spatial Gini coefficients. We provide closed-

form solutions that are particularly useful for back-of-the envelope calculations in Online Appendix G.

Exclusively correcting the summary statistics, however, limits the potential applications and is not

sufficient when the actual locations of the top-coded pixels matter.

A remaining challenge is to geo-reference the Pareto quantiles so that the brightest pixels actually

end up in the centers of dense urban agglomerations. It turns out that there is a straightforward solution.

Since we know the exact location of all pixels, we can rank them according to their radiance-calibrated

values from the nearest year and distribute the highest values from the Pareto distribution in the same

manner. Working with ranks avoids importing the artificial variability of the radiance-calibrated satellites

but preserves a crucial part of the data structure.22 Our algorithm for replacing top-coded pixels with

their quantile counterpart from Pareto distribution works as follows:

20The estimated shape parameters are a bit higher for top shares around 3% to 5% but then also appear to be more stable
in the upper tail. Since the VIIRS data are five years after the most recent radiance-calibrated image and have a different
overpass time, it is difficult to identify the source of these slight discrepancies.

21In additional analyses, we assigned the seven satellite-specific estimates to the adjacent stable light satellite-years. This
approach gives very similar results overall, albeit with more jumps. Country-specific estimates also lead to similar results,
although comparatively darker and poorer countries experience larger corrections. Additional results are available on request.

22The ranks of the pixels are much more stable over time than the values of the radiance-calibrated data. The rank
correlation of maximum city lights typically ranges from 0.90–0.95 for adjacent radiance-calibrated satellites (see Online
Appendix A).
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(1) For each of the 34 satellite-years t of stable lights data, calculate the number Nt of pixels ≥ 55

DN to be be replaced.

(2) Produce a ranking of these Nt pixels based on the radiance-calibrated data associated with the

same satellite-year or the data from the closest year.23

(3) Generate Nt theoretical values from a truncated Pareto distribution with the rule-of-thumb α =

1.5, the top-coding threshold yc = 55, and upper bound H = 2000.

(4) Replace the Nt stable lights pixels ≥ 55 so that the stable lights pixel with the i-th highest rank

from (2) is replaced by the i-th highest theoretical value.

We apply this procedure to every stable lights satellite image over the entire period from 1992 to

2013. This is the data which we use in the subsequent application and which underlies Figure 1. Note

that the support of the Pareto distribution is unbounded, so that its highest quantiles yield a handful

of values far exceeding the natural limit of man-made light intensity. To generate a realistic depiction

of city lights we impose an upper bound of 2000 DN, which approximately corresponds to the average

maximum observed in the world’s brightest cities.24

The correction has a significant impact on how we understand the global distribution of economic

activity. On average, 3.7% pixels above the top-coding threshold account for 17.7% of the total sum of

lights observed in the stable lights data. This share almost doubles to 31.94% after the correction—a

statement which is approximately true in every individual satellite-year, although later shares are bigger

in absolute terms before and after the correction. In other words, about four percent of all lit pixels

account for about a third of all visible economic activity. The worldwide spatial Gini coefficient rises by

nine percentage points, on average, after the correction. Note that the annual variation in the global

Gini coefficient is only a few percentage points, so that it is swamped by the size of the top-coding

correction. These findings are not particularly sensitive to the choice of the Pareto shape parameter,

although the size of the top-coding correction varies somewhat.25

We conduct two benchmarking exercises to assess the properties of the corrected data and better

understand at which scale of aggregation top-coding influences the conclusions we are likely to draw

when using night lights. We only briefly summarize the results here and relegate a full discussion to

Online Appendix I. The first exercise estimates national light-output elasticities as in Henderson et al.

(2012). Even at this high level of aggregation, the top-coding corrected series performs marginally
23Whenever the radiance-calibrated data creates ties, we first try to break those ties using the ranks of the stable lights

data and then use the ranks of neighboring radiance-calibrated satellites. This produces a near unique ranking each time.
We also experimented with other rankings. The results are very similar and available on request.

24Online Appendix A reports and discusses the observed inner-city maxima obtained by the radiance-calibrated satellites

which motivate this upper bound in man-made luminosity. The truncated Pareto has the CDF F (y) =
(
1 −

(
yc
y

)α)
/
(
1 −(

yc
H

)α) for yc ≤ y ≤ H , where an upper bound of H = 2000 does not affect the overwhelming majority of stable lights pixels
≥ 55 to be replaced, but does ensure realistic values at top, say, 0.01% of the data.

25Online Appendix H provides a variety of summary statistics and sensitivity checks using different Pareto shape
parameters. The size of the correction in both the country averages of light intensities and the country-wide spatial Gini
coefficients varies systematically with GDP per capita, country size and population density, in line with the occurrence of
top-coding illustrated in Figure 2.
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better. For the most part, however, the estimates using the corrected data are not just economically

but also numerically very close to the original results. Our second benchmark goes from the national to

the regional level and uses high-quality German regional accounts. Here we obtain two notable results.

First, the light-output elasticity rises considerably after the top-coding correction, particularly in urban

areas. Only the corrected data allow us to recover estimates of the light-output elasticity comparable

to the national-level in a cross-section and panel of German regions. Second, light intensities in the

corrected series are approximately linear in population density and diverge from the stable lights data

after about one thousand people per square kilometer, that is, in denser urban areas. Only the corrected

lights provide a realistic ranking of larger German cities. Both findings suggest that the corrected data

better capture the light-output gradient in developed economies with mature urban structures.

5 Application: Cities in Sub-Saharan Africa

Armed with this new data, we now return to the question of whether primate cities are outgrowing

secondary cities in Sub-Saharan Africa and how city structures are adjusting to continuously growing

populations. In most African countries, economic activity is concentrated in the biggest city: Dar Es

Salaam, Kinshasa and Lagos already are mega cities with more than 10 million inhabitants, or will attain

that status in a few years (United Nations, 2018). Excessive spatial concentration is generally a feature

of countries with poor infrastructure and a low level of development (Krugman, 1991, Puga, 1998,

Jedwab and Vollrath, 2018), although Africa’s urbanization differs from the experience of industrialized

economies for a variety of reasons.

The new millennium marked a turning point for most African economies. Sustained consumption

growth and pro-poor distributional change brought about falling poverty rates (Bluhm et al., 2018).

However, as countries are developing, it is theoretically unclear whether secondary cities will catch up

(Duranton, 2008). There is some empirical evidence suggesting that this is the case. Henderson et al.

(2012), for example, estimate that the African hinterland was growing about 2.3% faster than primate

cities over the period from 1992 to 2008.26 Moreover, many in the World Bank view secondary city

development as key to sustained poverty reduction (Christiaensen and Todo, 2014, Christiaensen et al.,

2016). Yet, manufacturing is heavily concentrated in primate and coastal cities with greater access to

world markets. The oil price boom of the 2000s, for example, hurt remote secondary cities more than

primate cities (Storeygard, 2016). Secondary cities in Africa have been characterized as “consumption

cities”, catering to the agricultural hinterland rather than the modern sector (Gollin et al., 2016).

Whether or not primate cities are driving productivity depends—at least in part—on their internal

structure. Informal settlements in large cities can more easily absorb growing populations (Jedwab

and Vollrath, 2018), but if these neighborhoods remain badly connected to the center, then cities will

be crowded, fragmented and less productive (Lall et al., 2017). An adverse urban form implies that

26Note that Henderson et al. (2012) also suggest that a “detailed study would be required to explain the result” (p. 1024).
In a related contribution, Fetzer et al. (2016) find that democratization in Africa led to higher growth of secondary cities at the
expense of the primary city. In India, Gibson et al. (2017) find that secondary cities matter more for rural poverty reduction
when studying the spillover of urban growth at the intensive and extensive margin.
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companies and inhabitant are faced with high transport costs and long commuting times, which limits

interactions and positive spillovers across the city (Rosenthal and Strange, 2004). Ultimately, this may

prevent the industries located in primate cities from reaping increasing returns and diversifying into

tradables, creating more urbanization without industrialization (Venables, 2017, Gollin et al., 2016).

Our application tackles both of these aspects. The first part uses the top-coding corrected data to

show that primate cities have outgrown secondary cities and towns over the period from 1992 to 2013.

This holds both at the intensive and extensive margin. The second part provides a novel perspective

on inner city activity. We show that inequality in light decreases over time as poorer neighborhoods

develop. At the same time, we find evidence for increasing fragmentation over time, suggesting that

newly forming sub-centers are not well-connected with the city as a whole.

City boundaries: Urban areas are often delineated using night light by defining them as contiguously

lit clusters above some luminosity threshold (Small et al., 2011, Storeygard, 2016, Gibson et al., 2017).

Satellite-derived footprints are particularly useful in Africa, where administrative boundaries quickly

become outdated. The night lights approach is appealing, since it offers a time-varying measure of

urban expansion, but also suffers from several well-known problems. No single threshold works well

for all cities: thresholding overestimates the urban extent of larger cities and penalizes other cities at

the same time (Small et al., 2011, Abrahams et al., 2018). We address these issues using a method

developed by Abrahams et al. (2018) to resolve exactly this issue. Their de-blurring algorithm reduces

the non-linear “overglow” in the lights data and considerably improves the accuracy of the identified

urban extents.27

To capture changes at the extensive margin and further minimize measurement errors, we define

cities as contiguously illuminated pixels in the de-blurred lights, provided that light is detected in at least

two satellites over a period of three years.28 The period from 1992 to 1994 marks the initial boundaries

and the period from 2011 to 2013 represents the latest available boundaries. We then identify city

locations by overlaying these urban areas with all settlement points from the Global Rural-Urban

Mapping Project (GRUMP) within three kilometers of the urban perimeter.29 An urban area receives the

name and attributes of the most populous settlement located within the expanded urban perimeter (or

the settlement point closest to the polygon centroid when population estimates are unavailable). Areas

which do not coincide with known settlements or are not observed in both periods are dropped. Finally,

we identify the primate city in each country as the city with largest population and define all other cities

and towns as secondary.30

27The de-blurring approach is based on two insights into the data generating process: i) the original light sources are
blurred by a symmetric Gaussian point-spread function, and ii), pixels in which light sources are located must be local maxima
in the so called the percent frequency of light detection image (for more detail see Abrahams et al., 2018).

28Two images of the same place in the same year may indicate different urban footprints due to a lack of on-board
calibration. Considering a window of three years and requiring multiple detection points effectively cancels out most of this
artificial variation.

29We manually extend this data to include all coordinates of cities which at some point over the period from 1992 to 2013
were designated the administrative capital of a province or state. We first identify the administrative capitals of subnational
regions using www.statoids.com and then geocode each city using multiple online gazetteers.

30We assume that secondary cities have an urban extent of at least 10 km2. Including villages and small towns does not
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Figure 4 – Primate and secondary cities in Sub-Saharan Africa

Notes: Illustration of the location of our panel of 40 primate and 493 secondary cities in SSA using the urban footprint
detection algorithm outlined in the text. Note that we dropped Equatorial Guinea due to gas flaring on the capital island
of Malabo and consider South Sudan as part of Sudan for the entire sample. Small towns and villages with a land area
smaller than 10 km2 and cities whose footprints were not detected in both periods are not considered.

Figure 4 shows a map of our universe of 533 cities and their population in 2000. 40 cities, one in

each country, are defined as primate, while 493 are secondary cities. The largest agglomeration in the

sample is Johannesburg, followed by Lagos and Cape Town.

City growth: Cities grow at the intensive margin, as existing city quarters develop and become

brighter, and at the extensive margin, as they expand and absorb surrounding areas. Total city growth

is the combination of intensive growth in the center, extensive growth in terms of area, and changes in

light intensity or population density in the newly added fringe of the city. We track our universe of cities

in Sub-Saharan Africa over the period from 1992 to 2013, calculating total growth and its components

in each year.31

Primate cities differ from secondary cities on a number of ways: i) they are larger than secondary

alter our qualitative results but induces more noise. Online Appendix J shows both the initial and latest boundaries together
with daytime images of Lagos, Luanda, and Johannesburg taken at the end of both periods.

31Following the literature, we average the summary statistics whenever more than one satellite are available in a particular
year.
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Table 3 – Annualized growth rates of African cities, 1992–2013

Primate Cities Secondary Cities

1992 2013 1992 2013

Panel a) Area in km2

Sum within initial bounds 454.14 454.14 56.60 56.60
Sum within latest bounds 603.78 603.78 65.53 65.53
Extensive growth 0.0215 0.0046

Panel b) Stable lights in DN

Sum within initial bounds 20010.17 26670.58 1876.09 2601.98
Sum within latest bounds 20482.85 34020.97 1833.12 3115.56
Intensive growth (center) 0.0215 0.0242
Intensive growth (fringe) 0.0325 0.0327
Total growth 0.0369 0.0288

Panel c) Corrected lights in DN

Sum within initial bounds 22524.88 36433.83 1987.19 2947.30
Sum within latest bounds 23000.64 44098.00 1944.74 3468.52
Intensive growth (center) 0.0274 0.0247
Intensive growth (fringe) 0.0377 0.0333
Total growth 0.0404 0.0292

Notes: The table reports a selection of summary statistics for African cities. The data are computed for each city and
then averaged across 40 primate and 493 secondary cities.

cities at the start of the sample (454.14 km2 versus 56.60 km2), ii) their urban perimeter expands

considerably faster (at a rate of 2.15% versus 0.46% per annum), iii) they are initially much brighter

than secondary cities, both in sum and in terms of average light intensity, and iv) their overall light

intensity grows considerably faster over the entire period from 1992 to 2013. Table 3 shows that these

stylized facts hold regardless of whether we use the stable lights or the corrected data.

Substantial differences between the two data sources appear once we focus on city growth at the

intensive margin. Top-coding affects primary cities much more than secondary cities and the size of the

correction becomes larger over time. Panels (b) and (c) of Table 3 suggest that the corrected sum of light

using the initial boundaries in 1992 is only about 12.6% larger in the corrected than in the stable lights

data. By 2013, the correction rises to 36.6%, as more pixels inside primary cities cross the top-coding

threshold and move up in the global ranking. Secondary cities experience much smaller corrections.

Note that this pattern has hardly changed over time. The stable lights data also underestimate total

growth in primate cities but by a much smaller margin, since newly added outskirts tend to be less

densely populated.

The correction has important implications for our understanding of city growth and agglomeration

economies in Sub-Saharan Africa. The stable lights data suggest that secondary cities have outgrown

primary cities at the intensive margin (2.42% vs. 2.15% per year) and are, therefore, catching up. This

picture is reversed after the top-coding correction (2.47% vs. 2.74% per year). Top-coding plays virtually

no role in small primate cities, such as Bissau. However, the annualized growth rates of larger cities,

20



like Kinshasa, Johannesburg, Luanda, Dakar or Khartum, increase by a percentage point or more.32

Total growth also rises to about 4% per annum in primate cities—a result which is remarkably close to

population-based estimates (United Nations, 2018).

We underpin these descriptive results with panel regressions focusing on growth at the intensive

margin. In each case, we regress the log of average lights emitted by city j in country i at time t,

ln lightsijt, on a linear time trend, an interaction of the linear time trend with an indicator for primate

cities, Pij , and a set of fixed effects that vary across specifications. We typically include city fixed effects

and then add satellite dummies to purge systematic measurement errors across satellites.33

Table 4 – Growth regressions for African cities, intensive margin

Dependent variable: Log mean lights

Stable lights data Corrected data
(1) (2) (3) (4) (5) (6)

Linear trend 0.013∗∗∗ 0.013∗∗∗ 0.008∗∗∗ 0.014∗∗∗ 0.013∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Primate × linear trend 0.003 0.003 0.007∗∗∗ 0.007∗∗∗

(0.002) (0.002) (0.003) (0.003)

City FE Yes Yes Yes Yes Yes Yes
Satellite FE No No Yes No No Yes
Observations 11724 11724 11724 11724 11724 11724
Cities 533 533 533 533 533 533

Notes: The table reports the results of city-level panel regressions using the stable lights and top-coding corrected data.
The specifications are variants of ln lightsijt = β1t + β2(t × Pij) + cij + st + εijt where t is a linear time trend, Pij
is an indicator for primate cities, cij is a city fixed effect and st contains satellite dummies. Standard errors clustered at
the city level are in parentheses. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 4 confirms that primate cities outgrew secondary cities by a significant margin over this period

but also adds a few qualifications. Columns (1) and (4) show that the average growth rate across all

cities, which is driven by the great majority of secondary cities, was slightly less than 1.5%. Pronounced

differences appear once we include the interaction terms. The stable lights data in columns (2) and (3)

suggest no differences across city types, which is an artifact of pixels in primate cities increasingly

hitting the top-coding threshold. On the contrary, the corrected data in columns (4) and (5) indicate

that primate cities grew 0.7 percentage points faster. The estimated coefficient on the interaction term

directly corresponds to a difference in means test. Hence, we can reject the null hypothesis that both

trends are the same at all conventional significance levels.

The growth rates of secondary cities are virtually unaffected by the correction. However, they fall

considerably according to both data sources once we include satellite dummies in columns (3) and (6).

Later satellites tend to be more sensitive to light than earlier satellites, so that the trends documented
32Online Appendix J presents data for each country, listing the primate city, as well as the growth rates of both the primary

and all secondary cities in terms of intensive growth.
33Note that our vector of satellite dummies accounts for all the possible combinations of satellites, e.g. the fact that the

value for 1993 are averages of satellites F10 and F12 which is different than a value that is solely obtained from either F10 or
F12.
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in the descriptive statistics and earlier regressions are overestimated across the board. Primate cities

actually grew approximately twice as fast as secondary cities at the intensive margin. Stated differently,

over the entire period of 21 years, light intensity within primate cities increased by about 37% but only

by about 18% in secondary cities.

Table 5 – Split sample growth regressions for African cities, intensive margin

Dependent variable: Log mean lights

Stable lights data Corrected data
(1) (2) (3) (4) (5) (6)

Panel a) Period from 1992 to 2002

Linear trend 0.005∗∗∗ 0.004∗∗∗ -0.001 0.005∗∗∗ 0.005∗∗∗ -0.001
(0.001) (0.001) (0.002) (0.001) (0.001) (0.002)

Primate × linear trend 0.006 0.006 0.007∗ 0.007
(0.004) (0.004) (0.004) (0.004)

Panel b) Period from 2003 to 2013

Linear trend 0.061∗∗∗ 0.063∗∗∗ 0.017∗∗∗ 0.064∗∗∗ 0.064∗∗∗ 0.016∗∗∗

(0.001) (0.001) (0.002) (0.001) (0.001) (0.002)

Primate × linear trend -0.021∗∗∗ -0.021∗∗∗ -0.006 -0.006
(0.004) (0.004) (0.005) (0.005)

City FE Yes Yes Yes Yes Yes Yes
Satellite FE No No Yes No No Yes
Observations (a) 6394 6394 6394 6394 6394 6394
Observations (b) 5330 5330 5330 5330 5330 5330
Cities (both) 533 533 533 533 533 533

Notes: The table reports the results of city-level panel regressions using the stable lights and top-coding corrected data.
The specifications are variants of ln lightsijt = β1t + β2(t × Pij) + cij + st + εijt where t is a linear time trend, Pij
is an indicator for primate cities, cij is a city fixed effect and st contains satellite dummies. Standard errors clustered at
the city level are in parentheses. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 5 investigates whether the relative growth rates of primate and secondary cities differ from the

1990s to the 2000s. Panel (a) shows that both city types grew slowly or not at all in the first period (1992-

2002)—consistent with accounts of sluggish recoveries from the deep recessions of the 1970s and

1980s across Sub-Saharan Africa (e.g. Bluhm et al., 2018). Robust growth returned in the 2000s. The

estimates in panel (b) demonstrate that growth in secondary cities increased substantially after 2002.

Top-coding plays a large role in this period. The stable lights data suggest that secondary cities grew

significantly faster than primary cities, while the corrected lights show that this is not the case. Column

(3) even suggests a marginally negative growth rate of primate cities. Our preferred specification in

column (6) suggests a growth rate of about 1.6% per annum for both city types. Note that all other

specifications without satellite fixed effects clearly overestimate the growth rates of secondary cities.

So far we have emphasized the intensive margin over the extensive margin or total growth. When

the city footprint is kept fixed, we can interpret growth in lights directly as increases in population density

and economic activity per square kilometer. Population density, in turn, is strongly correlated with

living standards and public good provision in developing countries (Gollin et al., 2017). Estimates
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from developed countries suggest that a doubling of population density raises productivity by about

5% (Rosenthal and Strange, 2004). Dense city centers are also the places where top-coding is most

pronounced. New developments at the fringe of a city are usually dimmer but here too primate cities

have been growing substantially faster than secondary cities. Lights in the fringe grow about 2.4% faster

in primate cities than in secondary cities.34 Taken together, our first set of results are good news for

African economies. Improvements in infrastructure and greater housing density should be increasing

welfare in primate cities, provided that they are not just absorbing growing populations and becoming

more congested.

City structure: Next, we study how inner city structures are transforming over time, in order to

better understand whether neighborhoods within African cities are becoming better connected or are

developing into loose clusters of informal settlements. From now on, we exclusively use the corrected

data since they provide a consistent view onto inner city activity and focus on the core of the city as

defined by the initial boundaries.35

We compute two proxies for the variation of urban population density or inner city fragmentation,

both of which have been previously used in the literature on urban forms (e.g. see Tsai, 2005). Our

first measure is the coefficient of variation of light intensity per pixel. The coefficient of variation is a

simple inequality measure capturing the variation of light intensities across an entire city. It is defined

as the ratio of the standard deviation to the mean. A high (low) value indicates large (small) inner-city

differences in the dispersion of light. The index is not bounded from above.

Our second measure of fragmentation is Moran’s I (Moran, 1950). Moran’s I takes the precise

location of each pixel within a city into account and indicates whether similar light intensities cluster

together in space. It is defined as

I =
N

S0

∑
i

∑
j wij(xi − x̄)(xj − x̄)∑

i(xi − x̄)2

where N is the number of pixels in the initial footprint of the city, wij are elements of an N ×N inverse

distance weight matrix, S0 is the sum of all wij , xi or xj is the pixel-level light intensity, and x̄ is mean

luminosity.36

Positive values of Moran’s I indicate that pixels are surrounded by others of similar luminosity

or population density (positive autocorrelation), while negative values reflect a checkerboard pattern

(negative autocorrelation). The index ranges from minus one to one. Light intensities within cities are

positively spatially correlated but there is a clear ranking. The index continuously falls as we move from

monocentric cities over polycentric cities to decentralized urban sprawl. A monocentric city in which

luminosity slowly and gradually decreases from the densely populated center to the sparsely populated

outskirts will have a higher Moran’s I than a checkered city in which dense and sparsely populated

34Online Appendix J contains the corresponding regression results.
35Including the expanding city perimeter does not fundamentally change our result on city structures.
36We work with a scaled version of Moran’s I to make cities consisting of different numbers of pixels comparable, that is,

we subtract its expected value under the null hypothesis of no spatial correlation: I∗ = I − E[I] = I − (−1/(N − 1)).
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areas take turns.

Panel (a) of Figure 5 illustrates the heterogeneity of urban structures on the subcontinent and shows

that our light-based measures capture meaningful variation. Consider, for example, cities with a high

Moran’s I and relatively low coefficients of variation, such as Conakry, Freetown and Dakar. This

combination indicates a regular structure with a bright center surrounded by similarly bright areas with

a slow decay towards darker outskirts. Other cities with the same coefficient of variation have a much

lower Moran’s I. Their spatial distribution is considerably more fragmented, matching other accounts.

A large part of Abidjan’s population, for example, lives in slums characterized by illegal land tenure,

buildings of non-permanent materials, and little or next to no infrastructure (UN-Habitat, 2003).

Figure 5 – Varying structures of cities in Sub-Saharan Africa

(a) Fragmentation in primate cities, 2000
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Notes: Illustration of urban structures in Sub-Saharan Africa. Panel (a) shows a cross-sectional scatter plot of the
estimated Coefficient of Variation (CV) and Moran’s I in 2000. Panel (b) displays the evolution of Moran’s I in
Johannesburg over the period from 1992 to 2013. The coefficient of variation and Moran’s I have been scaled by
100 for the ease of exposition.

Johannesburg is a particularly interesting case in terms of fragmentation. In 2000, it has the second

highest coefficient of variation and the lowest Moran’s I in our sample of primate cities. Owing to

a legacy of racial segregation during Apartheid, Johannesburg consists of alternating poor and rich

neighborhoods which do not form a single integrated city. There is limited evidence that this pattern is

changing. Panel (b) of Figure 5 shows that we observe a moderate increase in Moran’s I since the mid-

2000s while the coefficient of variation is decreasing at the same time. This suggests that efforts are

being made at integrating these very different neighborhoods, although the overall levels of inequality

and fragmentation remain very high.

To analyze these data in a more structured manner, we regress one of the measures of inner city

fragmentation, Fijt, on a linear time trend, an interaction of a linear time trend with an indicator for

primate cities, Pij , the log of average luminosity in the city, ln lightsijt, and a set of fixed effects that

vary across specifications. We also include the city-wide average light intensity to interpret the changing
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structure net of growth effects.37

Table 6 – Trends in fragmentation of African cities, 1992–2013

Dependent variable:

Coefficient of Variation Moran’s I
(1) (2) (3) (4) (5) (6)

Linear trend -0.275∗∗∗ -0.245∗∗∗ -0.141∗∗∗ 0.042∗∗∗ 0.048∗∗∗ -0.302∗∗∗

(0.029) (0.030) (0.053) (0.012) (0.012) (0.034)

Primate × linear trend -0.425∗∗∗ -0.417∗∗∗ -0.096∗∗∗ -0.098∗∗∗

(0.074) (0.074) (0.036) (0.036)

Log light intensity -7.817∗∗∗ -7.681∗∗∗ -9.147∗∗∗ -1.361∗∗∗ -1.330∗∗∗ -1.075∗∗

(1.512) (1.520) (2.034) (0.368) (0.369) (0.467)

City FE Yes Yes Yes Yes Yes Yes
Satellite FE No No Yes No No Yes

Observations 11680 11680 11680 11680 11680 11680
Cities 531 531 531 531 531 531

Notes: The table reports the results of city-level panel regressions using the top-coding corrected data. The
specifications are variants of Fijt = β1t + β2(t × Pij) + β3 ln lightsijt + cij + st + εijt, where Fijt is either the
coefficient of variation or Moran’s I, t is a linear time trend, Pij is an indicator for primate cities, cij is a city fixed effect
and st contains satellite dummies. Standard errors clustered at the city level are in parentheses. Both measures of
fragmentation have been scaled by 100 for readability. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 6 reveals two new insights. First, we observe a decrease in the dispersion of lights over time

which differs across city types. Column (1) shows that the coefficient of variation has been decreasing

steadily over the period from 1992 to 2013. Columns (2) and (3) add that the trend is almost three

times as fast in primate cities than in secondary cities (once satellite dummies are included). Second,

this decrease in light inequality is accompanied by a decrease in clustering as measured by Moran’s I.

African cities are becoming less compact and this effect is about 25% greater in primate cities. Column

(4) and (5) show that omitting satellite fixed effects would lead us to mistakenly conclude that secondary

cities have been becoming more compact, whereas column (6) shows that the trend is negative across

both types of cities. Moreover, all column shows that the increasing average light intensity has been a

driving factor behind the decrease in both the coefficient of variation and Moran’s I.

We take a closer look at when these characteristics emerge in Online Appendix J. The trend of

decreasing inner city inequality is equally pronounced throughout the sample period, while increasing

fragmentation (or decreasing compactness) is a relatively new phenomenon starting in the 2000s. We

also present somewhat inconclusive evidence on whether an increasing fragmentation of cities inhibits

their subsequent growth.

Our preferred interpretation of these findings is that Africa’s biggest cities are at a crossroads. They

are growing rapidly at the intensive and extensive margin, while the distribution of economic activity

and people is starting to equalize across the city. The simultaneous decrease in clustering tells us that

37Note that this does not alter our conclusions in any important manner.
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subcenters are forming but these may or may not ultimately coalesce into a cohesive whole.38 Although

poorer neighborhoods are becoming denser and brighter relative to the center, a lack of connectivity

to other neighborhoods remains a major obstacle and constrains economies of scale. By reducing the

frequency and quality of human interactions, congestion limits the ability of cities to facilitate matching,

sharing and learning (Duranton and Puga, 2004). Moreover, the lack of a compact shape itself induces

large welfare losses for urban consumers in developing countries (Harari, 2017).

It is important to emphasize that there is nothing tautological about these results in our correction;

if anything, the procedure provides a lower bound of primate city growth and fragmentation. Top-coded

pixels which become brighter over time move up in the global ranking and thus receive higher theoretical

values. Our correction does not explicitly consider whether these pixels are located in primary or

secondary cities, or if they are surrounded by other bright pixels. This is precisely how Johannesburg

is able to buck the trend of other primate cities in Sub-Saharan Africa.

6 Concluding remarks

While satellite data of nighttime lights are an increasingly popular proxy for economic activity, they

suffer from top-coding and severely underestimate the brightness of most cities. The key contribution

of this paper is to provide a solution to this problem and establish new findings about the economic

performance of cities in Sub-Saharan Africa.

Our solution rests on the claim that top lights can be characterized by a Pareto distribution. We

support this conjecture in two ways. First, a model of luminosity emitted by large cities suggests that

plausible assumptions directly lead to a power law in light emissions. Second, a battery of empirical

tests indicates that a Pareto distribution is a sound representation of the data. Other parametric or

non-parametric approaches are possible, but we find it appealing to directly link the distribution of bright

lights to both Zipf’s law of cities and the standard tail extrapolation problem. On this basis, we develop

a geo-referenced ranking procedure to replace the top-coded pixels with their theoretical counterparts

and present a new global panel of light intensities over the period from 1992 to 2013.

The new data lends itself to numerous applications and performs well in several benchmarking

exercises. In this paper, we focus on city growth and city structure in Sub-Saharan Africa. Our main

finding is that primary cities have maintained their dominant position but are becoming more fragmented

internally. This limits economies of scale and their ability to break into world markets. Institutional

features certainly play a role in this development and warrant more research. If public services are

improving, and public infrastructure connects striving neighborhoods, then this will have wide-ranging

benefits extending well beyond the city. Note that by focusing on cities in Sub-Saharan Africa, we also

submit our new data to the ultimate test. Since the top-coding correction makes a substantial difference

in a setting where both electrification rates and urban building densities are comparatively low, it will

almost surely matter more in other parts of the world.

38Simulations show that the emergence of sub-centers goes in line with an increase in light density, a decrease in light
inequality and an increase in fragmentation, just as we observe in the African data.
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A Additional summary statistics

In this section we provide further details on the construction of the stable lights and radiance-calibrated

lights, and compare their characteristics.

The main advantage of the stable lights series is that they are available as an annual panel.

Moreover, for several years more than one satellite has been orbiting Earth, resulting in a total of

34 satellite-years over the period of 1992 to 2013. The radiance-calibrated data, by contrast, are based

on rarely occurring additional flights of satellites which are about to be decommissioned and could be

operated with a different gain setting (lower or higher amplification settings). These auxiliary data are

only available for seven years over the entire period from 1996 to 2010. NOAA blends the stable lights

data from normal flight operations with these auxiliary satellite data to obtain the radiance-calibrated

series (Elvidge et al., 1999, Ziskin et al., 2010, Hsu et al., 2015). The resulting night light intensities are

free of top-coding and have no upper bound (at least in theory).

Several technical issues and measurement errors, occurring when the different fixed gain images

are merged at NOAA, produce a lot of variability in the radiance-calibrated data: i) the low amplification

data are based on considerably fewer orbits than the stable lights series (often covering only small parts

of a year), ii) they are generated by blending different parts of the frequency spectrum which are deemed

reliable, iii) higher light intensities are supported by fewer and fewer fixed-gain images1, and iv) fires or

stray lights have not been fully removed from the auxiliary data. All this contributes to the high variance

across different radiance-calibrated satellite-years.2 Because of this instability, together with the fact

that they are only available for seven out of 22 years, we only rely on the radiance-calibrated data to

infer the shape of the distribution at the top. The relative ranks of pixels are consistently measured

across the different satellites and less prone to be affected by measurement errors.

Table A-1 reports summary statistics for the 34 stable light satellite-years and the seven radiance-

calibrated years. Between 2.7% and 5.9% of all pixels in the stable lights images reach the top of the

scale (i.e., 55 DN to 63 DN), more so in later years. As the radiance-calibrated lights do not suffer

from top-coding, their mean, standard deviation and Gini in lights are much higher. Rather than being

capped at 63 DN, they reach maximum values from 2000 to 5000 DN. The fluctuations across satellites

are reflected in the overall mean light intensity, but are most apparent at the top. The maximum light

intensity doubles within three years and then decreases again by a similar amount (whereas the mean

increases and decreases by about 27% over the same period).

Table A-2 confirms that these fluctuations are not driven by a few outliers. Instead of examining

overall maxima, we now report various percentiles for the seven radiance-calibrated satellites and the

means above these percentiles. For example, the top 2% begin at 147.01 DN in the 1996 data, at

1Consider the 2010 radiance-calibrated product for example, the maximum number of cloud-free images is 134, the
suburbs of Paris are informed by about 50–60 cloud-free images, but the inner city core only by 10–20 images. This pattern
repeats itself throughout all major cities.

2Measurement errors are also present in the stable lights data and affect their reliability in the time series dimension but
to a much lesser extent. The sensors of the satellites deteriorate over their lifetime and have to be replaced every couple of
years, which implies that later recordings of any particular satellite tend to be the brightest (although this is not a hard rule). In
panel regressions, economists usually resort to a combination of satellite and time fixed effects to partially address this issue.
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214.59 DN in 2003, and again at 150.90 DN in 2010. The means above the various percentiles vary

similarly over time. The differences are largest in absolute values at the very top but remain sizable

throughout the distribution. This variation cannot be explained economically.

Table A-3 shows the maximum values attained by the seven radiance-calibrated satellites in 30

selected cities. Despite considerable variability over time, the relative ranking is in line with our

expectations. The light intensity of the brightest pixel in New York City, for example, is about ten times

greater than that of the brightest pixel in Nairobi. Note that the average maximum light intensity hardly

exceeds 2000 DN, no matter if we compute it for London, New York, or Shanghai. This is why we restrict

the maximum light intensities generated by our pixel-level correction to 2000 DN.

Table A-4 illustrates that not all differences between the stable lights and radiance-calibrated data

can be attributed to top-coding. It regresses all pixels below 55 DN of the stable lights on the radiance-

calibrated lights, where top-coding is supposed to not play a role. We find a regression coefficient

around one-half rather than equivalence. This absence of a one-to-one correspondence is owed to the

lack of on-board calibration, blooming (Abrahams et al., 2018), the presence of stray light (Hsu et al.,

2015), and geo-location errors (Tuttle et al., 2013).

Table A-5 reports the maximum light intensities recorded within 25 kilometers of the city center in

988 world cities with more than 500,000 inhabitants. Table A-6 adds the rank-correlations. The latter

are much higher and typically around 0.90–0.95 for adjacent radiance-calibrated years, which supports

our preference for pixel ranks over their actual values.
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Table A-1 – Summary statistics of the stable lights and radiance-calibrated data

Stable lights Radiance-calibrated

Year Flight No. Mean Std. Dev. Gini % ≥ 55 Mean Std. Dev. Gini Max

1992 F10 13.83 13.51 0.44 3.81
1993 F10 11.96 12.81 0.46 3.12
1994 F10 12.02 13.31 0.48 3.49

F12 14.65 13.93 0.44 4.20
1995 F12 13.09 13.57 0.46 3.76
1996 F12 12.69 13.36 0.46 3.51 19.42 55.63 0.65 2064
1997 F12 13.45 13.74 0.45 3.94

F14 10.98 12.87 0.49 3.16
1998 F12 13.89 13.89 0.45 4.18

F14 10.94 12.78 0.49 3.05
1999 F12 14.74 14.34 0.44 4.67 19.53 56.93 0.64 4698

F14 10.15 12.31 0.49 2.78
2000 F14 11.34 12.99 0.49 3.18 22.88 65.84 0.63 5552

F15 13.25 13.34 0.44 3.70
2001 F14 11.64 13.32 0.49 3.50

F15 12.93 13.26 0.45 3.54
2002 F14 12.14 13.70 0.49 3.77

F15 13.18 13.44 0.45 3.72
2003 F14 11.96 13.72 0.49 3.82 24.83 67.57 0.65 4186

F15 10.28 12.45 0.50 2.70
2004 F15 10.08 12.52 0.51 2.76 24.07 65.94 0.66 4357

F16 11.82 13.04 0.46 3.40
2005 F15 10.44 12.73 0.51 2.79

F16 10.44 12.54 0.49 2.85
2006 F15 10.56 12.91 0.51 2.93 20.63 50.93 0.63 3333

F16 12.26 13.37 0.47 3.48
2007 F15 10.74 12.82 0.50 2.79

F16 13.05 13.79 0.46 4.03
2008 F16 12.97 13.84 0.47 3.95
2009 F16 13.50 14.12 0.47 4.17
2010 F18 17.55 15.35 0.43 5.91 19.04 44.35 0.60 2110
2011 F18 14.78 14.68 0.46 4.94
2012 F18 16.44 15.20 0.44 5.76
2013 F18 16.23 15.20 0.44 5.78

Notes: The table reports summary statistics using a 10% sample of the stable lights and radiance-calibrated data at
the pixel level, where each pixel is 30 × 30 arc seconds. There are several years when two DMSP satellites were
concurrently recording data for the stable lights series, so that there are 34 satellite-years between 1992 and 2013. The
radiance-calibrated data are only available for the following periods: 16 Mar 96 – 12 Feb 97 (1996), 19 Jan 99 – 11 Dec
99 (1999), 03 Jan 00 – 29 Dec 00 (2000), 30 Dec 02 – 11 Nov 2003 (2003), 18 Jan 04 – 16 Dec 04 (2004), 28 Nov 05
– 24 Dec 06 (2006), and 11 Jan 10 – 9 Dec 10 (2010), although the actual coverage in terms of days often refers to a
much smaller period.
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Table A-2 – Summary statistics of the radiance-calibrated data (top shares)

Year 1996 1999 2000 2003 2004 2006 2010

Panel a) Top 5%

Percentile (x) 62.87 66.74 73.75 94.60 90.97 74.97 64.84
Mean above x 186.04 197.42 228.61 245.59 236.80 189.34 166.90

Panel b) Top 4%

Percentile (x) 76.30 84.79 95.62 119.27 114.26 94.03 81.98
Mean above x 215.29 228.01 264.84 280.40 270.51 215.70 190.42

Panel c) Top 3%

Percentile (x) 98.42 114.12 131.13 154.40 149.82 122.72 108.27
Mean above x 258.23 271.33 315.97 328.70 317.06 251.82 222.49

Panel d) Top 2%

Percentile (x) 147.01 166.33 198.77 214.59 207.97 168.84 150.90
Mean above x 327.60 338.23 393.22 402.32 387.54 305.83 269.84

Panel e) Top 1%

Percentile (x) 259.04 275.41 318.53 331.88 314.53 255.44 229.79
Mean above x 460.17 463.60 534.81 538.85 519.98 404.80 354.36

Panel f) Top 0.1%

Percentile (x) 729.41 716.94 815.16 822.00 805.43 605.13 511.62
Mean above x 979.91 960.86 1117.96 1110.62 1111.93 806.63 687.53

Panel g) Top 0.01%

Percentile (x) 1355.38 1279.48 1528.71 1491.25 1516.16 1085.71 936.22
Mean above x 1551.16 1652.31 1893.03 1828.03 1914.32 1316.93 1137.76

Notes: The table shows summary statistics of the radiance-calibrated data at the various percentiles. The input data
are a 10% representative sample of all non-zero lights in the radiance-calibrated data above the defined threshold at the
pixel level, where each pixel is 30× 30 arc seconds.
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Table A-3 – Maximum light intensities in 30 selected cities over time

City 1996 1999 2000 2003 2004 2006 2010 Average

Beijing 2265.07 3160.86 977.94 2979.75 2911.25 1575.00 1262.30 2161.74
Berlin 757.45 518.67 430.80 490.48 556.83 418.00 375.34 506.79
Bogota 661.73 774.02 416.75 602.80 828.82 622.18 489.89 628.02
Brussels 1334.32 1765.47 1632.47 1561.80 1767.69 1058.33 674.38 1399.21
Cairo 543.47 622.09 527.60 730.67 753.50 550.00 414.87 591.74
Calgary 1084.76 2077.92 1669.85 822.00 1520.70 731.15 721.22 1232.51
Casablanca 919.44 769.98 729.69 1214.73 1075.77 708.33 620.97 862.70
Damascus 800.90 724.38 470.05 472.74 893.66 820.00 675.15 693.84
Dhaka 1026.01 1410.89 882.44 935.03 840.66 920.00 465.11 925.73
Dubai 329.21 323.17 269.86 457.58 607.57 1280.34 420.12 526.84
Edinburgh 811.04 537.69 453.18 973.48 767.20 425.24 518.75 640.94
Foshan 715.98 1410.36 537.46 1499.66 1625.73 1142.86 1164.98 1156.72
Istanbul 579.83 551.57 413.14 653.84 543.84 421.08 327.46 498.68
Jakarta 683.82 664.56 1100.27 1381.62 788.43 805.95 632.81 865.35
Johannesburg 349.23 406.95 271.40 343.70 510.57 314.39 304.96 357.31
London 3342.95 2145.71 1664.97 1575.50 2123.50 1815.38 1366.45 2004.92
Los Angeles 1741.22 1807.50 1519.95 1757.50 1794.70 1288.89 1087.33 1571.01
Manila 1117.10 768.36 390.44 969.96 1260.40 692.31 551.60 821.45
Moscow 1011.28 1308.20 1270.86 1282.32 1142.01 945.45 655.45 1087.94
Mosul 225.95 232.32 211.38 370.24 284.30 321.64 319.33 280.74
Mumbai 1456.54 1790.01 1515.98 1775.52 1963.82 1322.22 1842.57 1666.67
Nairobi 180.27 188.66 211.83 173.54 191.45 174.02 164.13 183.41
New York 2299.18 2090.67 1971.10 2283.33 2877.00 1592.86 1399.78 2073.42
Paris 1827.80 2444.32 1177.72 1430.28 1794.70 1425.00 874.55 1567.77
Rio de Janeiro 926.51 917.27 748.92 699.31 708.83 484.08 461.57 706.64
Seoul 629.42 695.65 629.67 808.30 810.81 580.00 513.82 666.81
Shanghai 1965.24 1906.01 1123.89 2931.80 3982.13 2307.14 1926.59 2306.12
Sydney 1482.57 1470.49 1006.67 1923.48 1600.94 1275.00 751.58 1358.68
Tel Aviv 1284.19 1679.72 997.83 1397.40 1446.72 1188.24 1099.83 1299.13
Tokyo 1709.40 1768.79 1785.16 1876.90 2013.90 1273.33 940.31 1623.97

Notes: The table report the maximum light intensity in DN recorded within 25 km radius of the city center in selection of
cities. The input data are the radiance-calibrated lights. City locations are obtained from the Natural Earth point data of
major populated places.

Table A-4 – Regression of stable lights on radiance-calibrated data

Year 1996 1999 2000 2003 2004 2006 2010

Stable lights 0.5557 0.5502 0.4241 0.4357 0.3473 0.4874 0.7468
(0.0002) (0.0003) (0.0002) (0.0002) (0.0001) (0.0002) (0.0004)

Constant 4.6422 5.5218 3.9172 3.6007 3.2069 2.9392 6.4094
(0.0045) (0.0054) (0.0044) (0.0043) (0.0036) (0.0037) (0.0066)

R2 0.7440 0.7013 0.7115 0.7709 0.7873 0.8011 0.6319

Notes: The table reports OLS estimates of a regression of all pixels smaller than 55 DN of the stable lights on their
radiance-calibrated counterpart in all those years for which both data sources are available. Standard errors are in
parentheses. The data are a 10% random sample of lights at the pixel level, where each pixel is 30× 30 arc seconds.
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Table A-5 – Correlation matrix of maximum city lights

Years 1996 1999 2000 2003 2004 2006 2010

1996 1.0000
1999 0.9142 1.0000
2000 0.8615 0.8561 1.0000
2003 0.8588 0.8619 0.7715 1.0000
2004 0.8733 0.9002 0.8073 0.9181 1.0000
2006 0.8737 0.8974 0.8109 0.9307 0.9379 1.0000
2010 0.7831 0.7872 0.7428 0.8529 0.8525 0.8955 1.0000

Notes: The table reports correlations between the maximum light intensities recorded within 25 km radius of the city
center of 988 world cities with more than 500,000 inhabitants.

Table A-6 – Rank correlation matrix of maximum city lights

Years 1996 1999 2000 2003 2004 2006 2010

1996 1.0000
1999 0.9557 1.0000
2000 0.9167 0.9122 1.0000
2003 0.9048 0.9162 0.8451 1.0000
2004 0.9129 0.9331 0.8447 0.9536 1.0000
2006 0.9063 0.9256 0.8611 0.9482 0.9549 1.0000
2010 0.8495 0.8651 0.8108 0.8964 0.8973 0.9270 1.0000

Notes: The table reports rank correlations between the maximum light intensities recorded within 25 km radius of the
city center of 988 world cities with more than 500,000 inhabitants.
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B The top-coding threshold

The influence of top-coding in the DMSP-OLS satellite data has been underestimated in part because

much of the literature assumes it only affects pixels with the highest recorded value. However, even

though the scale of stable lights goes up to 63, we have good reason to assume that many pixels with

DNs of 62, 61, down to the mid-50s, are subject to top-coding and should be brighter than they are

recorded in the data.

The rationale behind this conjecture is straightforward. The stable lights data have already been

averaged at least twice during the data construction. First, the DMSP satellites average several higher

resolution pixels on-board to reduce the amount of information that needs to be transmitted down

to Earth. The OLS system records images at a nominal resolution of 0.56 km (the so-called fine

resolution), which is averaged on-board into 5 × 5 blocks to create a 2.77 km (smooth) resolution and

then reprojected onto a 30 arc second grid.3 Second, the data providers at NOAA process the daily

images into a single annual composite. As a result, many pixels suffering from top-coding in at least

one of the underlying fine resolution data points or smooth resolution daily images will end up with an

average value of less than 63. Hsu et al. (2015) suggest that this subtle type of top-coding may even

start at a DN as low as 35. Since “the OLS does onboard averaging to produce its global coverage data,

saturation does not happen immediately when radiance reaches the maximum level. On the contrary,

as the actual radiance grows, the observed DN value fails to follow the radiance growth linearly, causing

a gradual transition into a plateau of full saturation” (Hsu et al., 2015, p. 1872).

We explore the location of the top-coding threshold with a statistical approach. If only the stable

lights at 63 DN were subject to top-coding, we would expect the histogram in panel (a) of Figure B-1

to show a decreasing shape ending in a spike only at 63 DN. Instead, we observe an increase in the

number of pixels from 55 onwards (e.g. a bathtub shape), signaling that these values are top-coded as

well. Further evidence along these lines is provided by panel (b) of Figure B-1. It shows a histogram

of the light intensity of the stable lights DNs associated with high radiance-calibrated values (above

160 DN). There are a large number of pixels with DNs down to the mid-50s which correspond to very

high radiance-calibrated values, but the density falls rapidly below the mid-50s. Other years show very

similar patterns.

Table B-1 list the percentile values of the radiance-calibrated lights corresponding to stable lights at

55 DN, 56 DN and so on. The stable lights at 63 DN have the highest radiance-calibrated values (50%

of them are higher than 390 DN). But there is also a significant share of 55 DN lights corresponding to

high radiance-calibrated values, for instance, 25% are recorded with 140 DN or brighter.

3See https://directory.eoportal.org/web/eoportal/satellite-missions/d/dmsp-block-5d or Abrahams
et al. (2018) for a detailed description of the sensors and on-board processing.
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Figure B-1 – Histograms of stable lights in 1999

(a) If stable DN > 9
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Notes: Illustration of the location of the top-coding threshold in the stable lights. Panel a) shows a histogram of the F12
satellite in 1999 for all pixels with a DN greater 9. Panel b) shows a histogram of the same satellite only for pixels where
the radiance-calibrated light intensity is greater 160 DN. The input data are a 10% representative sample of all non-zero
lights in the stable lights and radiance-calibrated data at the pixel level (see Elvidge et al., 2009, Hsu et al., 2015).

Table B-1 – Percentiles of radiance-calibrated values at given stable lights values in 2000

Stable lights Radiance-calibrated percentiles
DN 5% 25% 50% 75% 95% 99%

55 53.20 74.94 99.41 140.85 232.90 328.86
56 56.15 79.99 108.20 153.92 250.93 344.05
57 60.14 84.99 115.11 164.63 262.18 357.60
58 64.13 92.81 125.35 179.57 277.59 392.33
59 70.32 101.97 141.92 203.17 306.77 423.28
60 79.16 116.64 163.92 231.91 344.57 497.25
61 89.33 137.89 196.68 268.21 410.91 625.30
62 109.03 176.36 246.66 331.46 524.18 762.63
63 160.91 276.92 390.08 560.28 952.14 1494.85

Notes: The table reports values from the cumulative distribution function of the radiance-calibrated lights which are
associated with a given stable lights value (from 55 to 63). For instance, 25% of the radiance-calibrated values associated
with a stable lights value of 61 DN, are below 122.06. The data are a representative 10% sample for the year 2000.
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C Proofs and extensions of the model

In this section we provide additional proofs and extensions of the model presented in the main text.

The CDF of the number of rings: Note that r = π−1/2x1/(2φ) implies x = πφr2φ and dx =

2φπφr2φ−1dr. Substituting these definitions into eq. (1) and integrating yields the CDF of the number

of rings per city as presented in eq. (2) of the main text

F (r) = 2φxcπ
−φ
∫ r

r̃
r−2φ−1dr = 2φxcπ

−φ
[
− 1

2φ
r−2φ

]r
r̃

=

0 for r < r̃ = π−1/2x
1/(2φ)
c

1− ycπ−φr−2φ for r >= r̃ = π−1/2x
1/(2φ)
c .

(C-1)

The density of pixels: Start with the distribution of the number of pixels. At distances d < d̃, the

amount of pixels increases linearly in d as rings farther away from the center contain more pixels:
d
ddπd

2 = 2πd. Beyond d̃, the effect within each city has to be multiplied by the survival function

1 − F (r) from eq. (2), as there are fewer and fewer cities of such size. Denoting the number of cities

as M , the absolute amount of pixels N as a function of d is

P (d) =

2πdM for d < d̃ = π−1/2x
1/(2φ)
c

2π1−φMxcd
1−2φ for d ≥ d̃ = π−1/2x

1/(2φ)
c .

(C-2)

The total number of pixels, N , can be obtained by integration

N =

∫ d̃

0
2πdMdd+

∫ ∞
d̃

2π1−φMxcd
1−2φdd = 2πM

[
1

2
d2
]d̃
0

+ 2π1−φMxc

[
1

2− 2φ
d2−2φ

]∞
d̃

= πM
y
1/φ
c

π
+
π1−φMyc
φ− 1

(
y
1/φ
c

π

)1−φ

= Mx1/φc +
1

φ− 1
Mx1/φc =

φ

φ− 1
Mx1/φc . (C-3)

Dividing eq. (C-2) by N yields the density, f(d), shown in eq. (4):

f(d) =

2π φ−1φ x
−1/φ
c d for d < d̃

2π1−φ φ−1φ x
1−1/φ
c d1−2φ for d ≥ d̃

(C-4)

with d̃ = π−1/2x
1/(2φ)
c .

The density is illustrated in panel (a) of Figure C-1.

An exponential distribution of light in cities: Next, we derive the distribution of top lights when

lights within a city follow a negative exponential function instead of an inverse power function. The
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following replaces assumption 4 from the main text.

Assumption 5. Within cities, the light density l(d) follows an exponential function l(d) = L0 exp(−γd),

where L0 ≥ l is the density at the center and γ > 0 is a decay parameter.

Panel (b) of Figure C-1 illustrates the negative exponential distribution (with γ = 0.15) and inverse

power distribution (with a = 0.7). Both functions exhibit a comparable decay from the city center to the

outskirts of the city. The main difference is that the negative exponential function attains values which

are not as high in the center but decreases more quickly towards zero at the outskirts, whereas the

inverse power function has a longer tail.

Contrary to our baseline case this altered setting does not directly generate a Pareto distribution

in lights. The distribution now depends on L0, the maximum luminosity of the center of each city. We

consider three cases. In each case, we focus on the light density f(l) conditional on L0. Using the

variable transformation of eq. (4) together with d = 1
γ ln(L0/l) yields

f(l | L0) =


2π1−φ φ−1φ x

1−1/φ
c

[
1
γ ln(L0/l)

]1−2φ
for l ≤ l̃

2π
φ− 1

φ
x−1/φc

1

γ︸ ︷︷ ︸
c

ln(L0/l) for l̃ < l < L0, (C-5)

where l̃ = L0 exp(−γd̃).

This conditional density increases for dim luminosities (at the fringes of the largest cities) and

decreases from l̃ onwards. The turning point and maximum, l̃, corresponds to the minimum size,

d̃, of each city in terms of distance from center. At higher luminosities, there are fewer and fewer pixels

as these are the ones located in ever smaller rings closer to the center.

To derive the marginal density f(l), we have to make assumptions about the distribution of

maximum luminosities L0 across cities.

Case 1: L0 is a constant, so that all cities large and small are equally bright in the center. This is

unrealistic, but mathematically simple. The marginal density of lights f(l) equals the conditional density

f(l | L0). Analyzing the top end of the distribution c ln(L0/l) for l̃ < l < L0 we observe a near linear

decrease with a slope of c d
dl ln(L0/l) ∝ −1

l for l close to L0. There is no power law. The assumption

of a constant L0 across all cities generates too many pixels with the highest luminosities.

Case 2: L0 follows a Pareto distribution across cities so that some city centers are much brighter

than others. Empirical evidence points in this direction (see Table A-3). We are only interested in the

upper part of the density in eq. (C-5).4 If L0 follows the Pareto density with η = 1 so that f(L0) =

Lmin/L
2
0, with Lmin as the minimum center luminosity, we have the joint density of l and L0 as

f(l, L0) = f(L0)f(l | L0) = c
Lmin
L2
0

ln(L0/l) for l̃max < l < Lmax and L0 > l. (C-6)

4Note that the threshold l̃ depends on the random variable L0. Hence, we restrict our analysis to the area of the density
starting at the highest possible threshold value l̃max, corresponding to L0 = Lmax.
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The marginal density, f(l), is found by integrating L0 out of the above

f(l) = cLmin

∫ Lmax

l

1

L2
0

ln(L0/l)dL0 = cLmin

[
ln l − lnL0 − 1

L0

]Lmax
l

= cLmin

[
1

l
− 1

Lmax
(ln(Lmax/l) + 1)

]
, (C-7)

which holds for l̃max < l < Lmax.

Case 3: Alternatively, an intermediate case for L0 is a uniform distribution between values Lmin and

Lmax with density f(L0) = (Lmax − Lmin)−1. Cities (big and small) differ in their maximum luminosity,

but all maximum luminosities are equally likely across cities. Following the same steps as in the second

case, the marginal density is

f(l) =
c

Lmax − Lmin

∫ Lmax

l
ln(L0/l)dL0 =

c

Lmax − Lmin

[
L0(lnL0 − ln l − 1)

]Lmax
l

=
c

Lmax − Lmin

[
l + Lmax(ln(Lmax/l)− 1)

]
, (C-8)

which holds for l̃max < l < Lmax.

Cases 2 and 3 are heavy-tailed distributions which differ mathematically from the simple Pareto.

But given their heavy tails, they may be approximated by a Pareto. As shown in Figure C-2, this works

particularly well for case 2 with a Pareto distribution of α = 1.5, while for case 3 the Pareto distributions

with α = 1.2 works reasonably well.

Result 2. Based on Assumptions 1–3 and 5, as well as a sufficient variation of maximum luminosities

across cities, it follows that top lights above a threshold l̃ can be approximated by a Pareto distribution.

In sum, when inner city lights follow a negative exponential function, a Pareto distribution of top

lights does not arise analytically in the three cases considered here. However, depending on the exact

assumptions made about differences in the maximum brightness across cities, the resulting distribution

is heavy-tailed and can be approximated by a Pareto distribution.
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Figure C-1 – Illustration of distributions
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Notes: The left panel shows the pixel density from eq. (4) with xc = 10000 and φ = 1.5. The right panel shows the
negative exponential distribution with γ = 0.15 as well as the inverse power distribution with a = 0.7, both start at
P0 = 2000.

Figure C-2 – Approximating the theoretical densities with Pareto distributions

(a) Case 2 and Pareto with α = 1.5
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(b) Case 3 and Pareto with α = 1.2
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Notes: The left panel shows the pixel density from eq. (C-7) with xc = 10000, φ = 1.5 and γ = 1.5. The Pareto
distribution with α = 1.5 is scaled to fit. The right panel shows the pixel density from eq. (C-8) with xc = 10000, φ = 1.5
and γ = 1.5. The Pareto distribution with α = 1.2 is scaled to fit.
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D Extreme value theory

As an alternative to our stylized urban economics model, we can also motivate a Pareto distribution in

top lights purely on statistical grounds using extreme value theory (EVT). EVT deals with the probability

distributions of sparse observations such as threshold exceedances. A key result of this theory is that

these quantities observe a Generalized Pareto distribution (Coles, 2001).

More precisely, let X1, X2, . . . be a sequence of independent random variables – such as light –

with common but unknown distribution function F , and let Mn = max{X1, . . . , Xn}. If F satisfies

the extremal types theorem (Coles, 2001), so that for large n, P[Mn > z] ≈ G(z) with G(z) as the

Generalized Extreme Value distribution, then, for a high enough threshold u, the distribution of the

threshold exceedance P[(X − u) > y|X > u] is approximately

H(y) = 1−
(

1 +
ξy

σ̃

)− 1
ξ

, (D-1)

no matter which regular distribution X was drawn from.

This means that we will observe a Generalized Pareto distribution with parameters ξ and σ for all

lights values above a specified threshold. With ξ = 0, this reduces to the exponential distribution and

with ξ > 0 the distribution is Pareto. There is strong evidence that the latter case holds for the lights

data.

Table D-1 shows the results of fitting the Generalized Pareto distribution to various top shares of

the light distribution of the seven radiance-calibrated satellites. The fit is very good and the estimated ξ

parameters are always significantly positive. This clearly points towards a Pareto distribution.

Figure D-1 plots the Generalized Pareto distribution against the empirical distribution function of the

radiance-calibrated data from 2010. It visualizes the close fit and confirms the results from the previous

regression.
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Table D-1 – Fitted Generalized Pareto distributions, varying thresholds

Year 1996 1999 2000 2003 2004 2006 2010 Average

Panel a) Top 5%

lnσ 4.2422 4.5197 4.7304 4.7560 4.7136 4.5239 4.4477 4.5619
(0.0062) (0.0051) (0.0053) (0.0052) (0.0050) (0.0051) (0.0049) [0.1860]

ξ 0.4917 0.3136 0.2792 0.2354 0.2398 0.1972 0.1652 0.2746
(0.0056) (0.0043) (0.0044) (0.0042) (0.0040) (0.0040) (0.0038) [0.1075]

Threshold 63 67 74 95 91 75 65 –
Observations 96,685 116,858 106,914 100,094 106,899 99,486 107,745 –

Panel b) Top 4%

lnσ 4.5136 4.6989 4.9099 4.8569 4.8241 4.6278 4.5574 4.7127
(0.0066) (0.0055) (0.0055) (0.0057) (0.0054) (0.0055) (0.0052) [0.1545]

ξ 0.3720 0.2401 0.2020 0.2051 0.2051 0.1605 0.1212 0.2152
(0.0057) (0.0044) (0.0044) (0.0045) (0.0042) (0.0043) (0.0039) [0.0790]

Threshold 76 85 96 119 114 94 82 –
Observations 77,348 93,484 85,481 80,075 85,489 79,589 86,195 –

Panel c) Top 3%

lnσ 4.8260 4.8674 5.0702 4.9841 4.9127 4.7153 4.6387 4.8592
(0.0069) (0.0060) (0.0060) (0.0063) (0.0061) (0.0062) (0.0058) [0.1491]

ξ 0.2266 0.1753 0.1387 0.1629 0.1873 0.1356 0.0944 0.1601
(0.0056) (0.0047) (0.0045) (0.0049) (0.0047) (0.0047) (0.0042) [0.0424]

Threshold 98 114 131 154 150 123 108 –
Observations 58,010 70,112 64,110 60,057 64,133 59,691 64,646 –

Panel d) Top 2%

lnσ 5.0520 5.0042 5.1151 5.0807 4.9771 4.7847 4.6836 4.9568
(0.0079) (0.0070) (0.0073) (0.0076) (0.0075) (0.0075) (0.0070) [0.1614]

ξ 0.1355 0.1332 0.1438 0.1432 0.1933 0.1266 0.0903 0.1380
(0.0060) (0.0053) (0.0055) (0.0057) (0.0058) (0.0056) (0.0050) [0.0304]

Threshold 147 166 199 215 208 169 151 –
Observations 38,673 46,742 42,740 40,039 42,755 39,795 43,097 –

Panel e) Top 1%

lnσ 5.2035 5.1025 5.2287 5.1729 5.1013 4.8650 4.7009 5.0535
(0.0109) (0.0099) (0.0103) (0.0108) (0.0109) (0.0108) (0.0100) [0.1936]

ξ 0.0961 0.1262 0.1374 0.1483 0.2037 0.1324 0.1163 0.1372
(0.0082) (0.0074) (0.0078) (0.0082) (0.0086) (0.0082) (0.0074) [0.0337]

Threshold 259 275 319 332 315 255 230 –
Observations 19,337 23,371 21,370 20,019 21,378 19,897 21,548 –

Notes: The table reports parameter estimates from fitted the Generalized Pareto distribution shown in eq. (D-1). The
input data are a 10% representative sample of all non-zero lights in the radiance-calibrated data above the defined
threshold at the pixel level, where each pixel is 30 × 30 arc seconds. The last column reports the point average of the
seven satellites and its standard deviation in brackets.
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Figure D-1 – Generalized Pareto CDF versus EDF, radiance-calibrated data in 2010
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Notes: Illustration of Generalized Pareto CDF fitted to the data and the empirical distribution function (EDF). The EDF
and Generalized Pareto CDF are fitted to the top 4% of stable lights in 2010. The input data are a 10% representative
sample of all non-zero lights of the radiance-calibrated data at the pixel level, where each pixel is 30× 30 arc seconds.
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E Additional results using the radiance-calibrated data

This section complements the analysis in the paper by proving additional robustness checks of our

Pareto hypothesis using the seven radiance-calibrated satellites.

Visual Inspection: Panel (a) of Figure E-1 shows Zipf plots for the top 2% of lights for each of the

seven radiance-calibrated satellites. A Zipf plot is a visualization of the Pareto survival function in logs.

A linear Zipf plot is usually considered evidence in favor of the Pareto distribution, but its practical

relevance is being contested (Cirillo, 2013). Our plots for the lights data are qualitatively similar to those

of the top incomes literature, in that they display linear sections together with some initial curvature and

outliers at the end.5 It is well-known that Zipf plots often deviate from linearity at the very top since fewer

and fewer values are observed at the extremes. Sometimes this is addressed by removing the very top.

We use logarithmic bins so that the size of the bins increases by a multiplicative factor (Newman, 2005).

The sensitivity of Zipf plots to outliers is compounded by instability and measurement errors afflicting the

radiance-calibrated satellites. While we conclude that the Zipf plot using the radiance-calibrated data is

ambiguous, we obtain a near-linear Zipf plot using the superior VIIRS data (see the next section).

Panel (b) of Figure E-1 provides another graphical test for the Pareto distribution based on ‘Van der

Wijk’s Law’. The Pareto distribution is unique in that the average above some level y is proportional to

y at all points in the tail, with a factor of proportionality equal to α
α−1 > 1. The graph plots, for each DN

on the x-axis, the average luminosity of all pixels brighter than this value on the y-axis. As expected,

we observe a linear relationship with a slope above unity.

Tests against the lognormal distribution: As a robustness check, we pit the Pareto distribution

against other plausible candidates. We pay particular attention to the log-normal distribution, since it is

commonly used to describe the complete distribution of incomes or city sizes.

Table E-1 shows the results from separate regressions of the empirical distribution function on the

Pareto CDF and the lognormal CDF based on the top 4% of the data. The estimated coefficient for the

Pareto CDF is closer to unity and the R2 is substantially larger than in the lognormal counterpart (0.98

vs. 0.83).

Figure E-2 visualizes this difference in fit for the year 2010. The lognormal CDF fits the data poorly,

while the Pareto CDF is always closer to the empirical distribution.

Unrestricted rank regressions: Recall that for Pareto-distributed observations yi, i = 1, ...N , we

have rank(yi) ≈ Nyαc y
−α
i , or, in logarithms log rank(yi) − logN ≈ α log yc − α log yi. Hence, in the

regression

log
(

rank(yi)−
1

2

)
− logN = α1 log yc + α2 log yi + ε (E-1)

5Working with any top share, from the top 5% to the top 1% gives qualitatively similar results, even if the case for a
Pareto distribution tends to be stronger the higher we set the threshold. This is in line with the empirical literature on Pareto
applications in other fields.
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only the Pareto distribution satisfies the null hypothesis that −α1 = α2 with α2 < 0. As before, we

follow Gabaix and Ibragimov (2011) and subtract one half from the rank to improve the OLS estimation

of the tail exponent in the rank regression.

Table E-2 reports the OLS rank regression results of eq. (E-1) for all seven satellites at various

different thresholds, i.e. the top 5% to top 1%. The two coefficients are usually very close and the R2s

are high (0.96 – 0.99).6

The Hill estimator: If the null hypothesis −α1 = α2 = α is enforced in eq. (E-1), one can directly

obtain the parameter estimate for the Pareto α. In the main text we estimate this parameter using

OLS rank regressions. As a robustness check, we now use the Hill estimator (Hill, 1975), α̂Hill =

(N − 1)
(∑N−1

i=1 log yi − log yc

)−1
, for the restricted rank regression

log rank(yi)− logN ≈ α log yc − α log yi. (E-2)

Under the assumption of a Pareto distribution, the Hill estimator equals the efficient maximum likelihood

estimator and is known for its superior properties for fitting the tail of the Pareto distribution (Soo, 2005,

Eeckhout, 2009). The standard errors are given by α̂Hill/
√
N − 3 (see Gabaix, 2009).

Table E-3 report the results for all seven satellites at various different thresholds, i.e. the top 5% to

top 1%. The Pareto parameters obtained using the Hill estimator are very similar to the OLS estimates

in the main text. For the top 3-4%, the values are between 1.3 and 1.6 for the seven satellites, very

close to the OLS average parameter estimate of 1.5. For higher thresholds, we observe also the same

increase in the parameter estimate that we observe in the OLS results.

6Note that formal statistical tests, e.g. tests of coefficient equality or Kolmogorov-Smirnoff tests, do not make much sense
in huge samples such as ours. Gabaix and Ioannides (2004, p. 2350) capture this nicely: “with an infinitely large dataset
one can reject any non-tautological theory.” The extremely small standard errors lead to overrejections of the null hypothesis
unless the empirical value equals exactly the theoretical value.
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Figure E-1 – Zipf plot and Van der Wijk’s plot
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Notes: Popular graphical tests for an approximate Pareto distribution in top lights. Panel a) shows the Zipf plot for the top
2% of all pixels. The figure uses logarithmic binning to reduce noise and sampling errors in the right tail of the distribution
(see Newman, 2005). There are about 100 bins in the tail, where the exact number depends on the range of the input
data. Panel b) demonstrates Van der Wijk’s law, which states that the average light above some value u is proportional
to u, this is E[y|y > u] ∝ u. Here, too, the data is the top 2% of all pixels. The input data are a 10% representative
sample of all non-zero lights in the radiance-calibrated data at the pixel level.
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Table E-1 – Regression of the EDF on theoretical CDFs, top 4%

Year 1996 1999 2000 2003 2004 2006 2010 Average

Panel a) Pareto CDF on RHS

Slope 1.0108 1.0551 1.0616 1.0575 1.0746 1.0722 1.0796 1.0588
(0.0003) (0.0004) (0.0005) (0.0004) (0.0004) (0.0005) (0.0005) [0.0231]

Constant -0.0320 -0.0668 -0.0746 -0.0666 -0.0787 -0.0784 -0.0858 -0.0690
(0.0002) (0.0002) (0.0003) (0.0002) (0.0003) (0.0003) (0.0003) [0.0177]

R2 0.9914 0.9866 0.9802 0.9884 0.9869 0.9860 0.9831 –
Panel b) Lognormal CDF on RHS

Slope 0.9004 0.9265 0.9181 0.9387 0.9520 0.9472 0.9488 0.9331
(0.0014) (0.0016) (0.0018) (0.0014) (0.0014) (0.0014) (0.0015) [0.0190]

Constant -0.1653 -0.2186 -0.2238 -0.1954 -0.2088 -0.2031 -0.2179 -0.2047
(0.0011) (0.0013) (0.0015) (0.0011) (0.0011) (0.0011) (0.0012) [0.0200]

R2 0.8496 0.7913 0.7626 0.8508 0.8467 0.8480 0.8268 –

Notes: The table reports results of a regression of the empirical distribution function (EDF) on the Pareto or lognormal
CDF, using the top 4% of the data. The data are a 10% representative sample of all non-zero lights in the radiance-
calibrated data at the pixel level, where each pixel is 30× 30 arc seconds. The last column reports the point average of
the seven satellites and its standard deviation in brackets.

Figure E-2 – Pareto and lognormal CDF versus EDF, radiance-calibrated lights in 2010
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Notes: Illustration of the difference between the Pareto and lognormal CDFs fitted to the data and the empirical
distribution function (EDF). Note that the lognormal distribution was fitted to the whole distribution rather than the tail
because of its unimodal shape, while the Pareto distribution is estimated only on the tail. For comparison, we adjust the
CDFs so that they all start at the top 4% of radiance-calibrated lights in 2010. The input data are a 10% representative
sample of all non-zero lights in the radiance-calibrated data at the pixel level, where each pixel is 30× 30 arc seconds.
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Table E-2 – Unrestricted rank regressions

Year 1996 1999 2000 2003 2004 2006 2010 Average

Panel a) Top 5%

yi -1.4334 -1.4996 -1.4630 -1.6903 -1.6933 -1.7388 -1.7170 -1.6050
(0.0012) (0.0012) (0.0013) (0.0013) (0.0013) (0.0014) (0.0015) [0.1330]

yc 1.4736 1.5632 1.5318 1.7539 1.7582 1.8087 1.7936 1.6690
(0.0014) (0.0015) (0.0016) (0.0016) (0.0015) (0.0017) (0.0018) [0.1405]

R2 0.9694 0.9651 0.9600 0.9701 0.9721 0.9677 0.9620 0.9666
Observations 96,685 116,858 106,914 100,095 106,899 99,487 107,745 104,955

Panel b) Top 4%

yi -1.5130 -1.6328 -1.6165 -1.8403 -1.8513 -1.9101 -1.9056 -1.7528
(0.0015) (0.0014) (0.0016) (0.0016) (0.0014) (0.0017) (0.0018) [0.1612]

yc 1.5618 1.6974 1.6870 1.8978 1.9132 1.9767 1.9804 1.8163
(0.0017) (0.0017) (0.0019) (0.0018) (0.0016) (0.0019) (0.0020) [0.1655]

R2 0.9662 0.9661 0.9623 0.9725 0.9759 0.9711 0.9658 0.9685
Observations 77,348 93,484 85,482 80,075 85,489 79,590 86,196 83,952

Panel c) Top 3%

yi -1.6609 -1.8385 -1.8624 -2.0491 -2.0633 -2.1470 -2.1746 -1.9708
(0.0019) (0.0018) (0.0019) (0.0019) (0.0016) (0.0020) (0.0021) [0.1882]

yc 1.7225 1.9017 1.9340 2.1044 2.1174 2.2068 2.2429 2.0328
(0.0022) (0.0020) (0.0022) (0.0021) (0.0018) (0.0022) (0.0024) [0.1872]

R2 0.9646 0.9695 0.9691 0.9761 0.9811 0.9762 0.9721 0.9727
Observations 58,011 70,115 64,111 60,058 64,134 59,692 64,647 62,967

Panel d) Top 2%

yi -1.9711 -2.1628 -2.2315 -2.3687 -2.3478 -2.4809 -2.5663 -2.3042
(0.0025) (0.0023) (0.0022) (0.0023) (0.0018) (0.0024) (0.0025) [0.2009]

yc 2.0329 2.2180 2.2831 2.4156 2.3880 2.5295 2.6215 2.3555
(0.0029) (0.0025) (0.0025) (0.0025) (0.0020) (0.0026) (0.0027) [0.1974]

R2 0.9698 0.9757 0.9798 0.9825 0.9871 0.9826 0.9807 0.9797
Observations 38,673 46,742 42,740 40,039 42,756 39,794 43,097 41,977

Panel e) Top 1%

yi -2.5471 -2.7216 -2.7241 -2.8508 -2.7006 -2.9769 -3.1652 -2.8123
(0.0039) (0.0031) (0.0031) (0.0030) (0.0027) (0.0032) (0.0029) [0.2049]

yc 2.5922 2.7593 2.7596 2.8823 2.7258 3.0097 3.2005 2.8471
(0.0043) (0.0034) (0.0034) (0.0033) (0.0029) (0.0035) (0.0031) [0.2031]

R2 0.9781 0.9849 0.9864 0.9889 0.9895 0.9886 0.9911 0.9868
Observations 19,337 23,373 21,372 20,020 21,377 19,898 21,551 20,990

Notes: The table reports OLS results obtained from the unrestricted rank regressions eq. (E-1) at various relative
thresholds. The input data are a 10% representative sample of all non-zero lights in the radiance-calibrated data above
the defined threshold at the pixel level, where each pixel is 30 × 30 arc seconds. Standard errors are in parentheses.
The last column reports the point average of the seven satellites and its standard deviation in brackets.
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Table E-3 – Parameter estimates from rank regressions (Hill estimator)

Year 1996 1999 2000 2003 2004 2006 2010 Average

Panel a) Top 5%

Pareto α̂ 1.2286 1.1833 1.1289 1.3112 1.3100 1.3356 1.3012 1.2570
(0.0040) (0.0035) (0.0035) (0.0041) (0.0040) (0.0042) (0.0040) [0.0780]

Observations 96,685 116,858 106,914 100,095 106,899 99,487 107,745 –

Panel b) Top 4%

Pareto α̂ 1.2487 1.2689 1.2233 1.4431 1.4315 1.4666 1.4333 1.3593
(0.0045) (0.0042) (0.0042) (0.0051) (0.0049) (0.0052) (0.0049) [0.1065]

Observations 77,348 93,484 85,482 80,075 85,489 79,590 86,196 –

Panel c) Top 3%

Pareto α̂ 1.2948 1.4152 1.3805 1.6023 1.6234 1.6672 1.6478 1.5188
(0.0054) (0.0053) (0.0055) (0.0065) (0.0064) (0.0068) (0.0065) [0.1509]

Observations 58,011 70,115 64,111 60,058 64,134 59,692 64,647 –

Panel d) Top 2%

Pareto α̂ 1.5068 1.6869 1.7536 1.8920 1.9325 1.9860 2.0095 1.8239
(0.0077) (0.0078) (0.0085) (0.0095) (0.0093) (0.0100) (0.0097) [0.1832]

Observations 38,673 46,742 42,740 40,039 42,756 39,794 43,097 –

Panel e) Top 1%

Pareto α̂ 2.0363 2.2458 2.2613 2.4101 2.3582 2.5190 2.6558 2.3552
(0.0146) (0.0147) (0.0155) (0.0170) (0.0161) (0.0179) (0.0181) [0.2011]

Observations 19,337 23,373 21,372 20,020 21,377 19,898 21,551 –

Notes: The table reports the results of the restricted rank regression eq. (E-2) using the Hill estimator. The data are
a 10% representative sample of all non-zero lights in the radiance-calibrated data at the pixel level, where each pixel
is 30 × 30 arc seconds. The last column reports the point average of the seven satellites and its standard deviation in
brackets.
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F Additional results using the VIIRS data

Since October 2011, the first satellite of the Suomi National Polar Partnership Visible Infrared Imagining

Radiometer Suite (NPP-VIIRS) has been in orbit. The VIIRS day-night-band (DNB) on-board sensors

have a much higher native resolution of 15 arc seconds, are radiometrically calibrated, do not suffer

from top-coding, and record a physical quantity (radiance). This section complements the analysis in

the paper by proving additional robustness checks of our Pareto hypothesis using this new data.

Although the new system is undoubtedly superior in many respects, comparability with the previous

series is limited for at least two reasons: i) the first annual VIIRS composite made available by NOAA

refers to the year 2015, so that there is no temporal overlap with the 1992-2013 DMSP-OLS series,

ii) the VIIRS satellites have an overpass time around midnight, in contrast to the evening hours of the

DMSP-OLS satellites, so that it is not entirely clear what kind of production and consumption activity

they capture (Elvidge et al., 2014, Nordhaus and Chen, 2015). While we do not rely on the VIIRS

data for our replacement procedure, we use them as another robustness check for whether the Pareto

distribution holds. The VIIRS data are particularly insightful in this respect because of their superior

quality.

To compare the higher resolution VIIRS image to the DMSP data, we resample the raster to the

DMSP resolution and then extract radiances of each pixel at the locations of the 10% sample that we

have been using thus far. Naturally, there are considerable differences in the scale since the VIIRS-DNB

records radiance. Note that radiance is measured in nano watt per steradian per square centimeter

(10−9Wcm−2sr−1). The difference in scale is reflected in the summary statistics of the VIIRS data.

The mean is 3.98, the standard deviation is 18.65, and the maximum is 6567.42. The spatial Gini is

much higher using the VIIRS data than in the radiance-calibrated data (0.79 vs. 0.60-0.65) which is

owed to their improved sensors and finer resolution. Nevertheless, the top tail of the light distribution

essentially exhibits the same properties.

Figure F-1 shows the Zipf plot for the VIIRS data. The shape is nearly linear, even high up in the

tail and displays less curvature than the corresponding plot for the radiance-calibrated data. This also

suggests that the radiance-calibration process introduces noise and understates the Paretian nature of

night lights.

Table F-1 replicates the results of the rank regressions from the previous section using the VIIRS

data. The results are qualitatively similar to those obtained with the radiance-calibrated data, but some

small differences are notable. In particular, the estimated shape parameters are a bit higher for top

shares around 3% to 5% but then also appear to be more stable in the upper tail. Since the VIIRS data

are from five years after the most recent radiance-calibrated image and have a different overpass time,

it is difficult to identify the source of these discrepancies.
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Figure F-1 – Zipf plot using the top 2% of pixels in the VIIRS data
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Notes: The figure shows a Zipf plot for the top 2% of all pixels of the VIIRs data, after resampling the data to the
DMSP-OLS grid and resolution. The figure uses logarithmic binning to reduce noise and sampling errors in the right tail
of the distribution (see Newman, 2005). There are about 140 bins in the tail, where the exact number depends on the
range of the input data. The VIIRs pixels correspond to the same 10% representative sample of all non-zero lights in the
radiance-calibrated data at the pixel level obtained from Hsu et al. (2015) and used in the rest of the paper.
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Table F-1 – Rank regressions based on the VIIRS data in 2015

Unrestricted regressions Hill estimates Restricted regressions

Panel a) Top 5%

yi -1.9603 α 1.5876 α 1.7331
(0.0013) (0.0065) (0.0100)

yc 2.0405
(0.0015)

R2 0.9879
Observations 59,633 59,633 59,633

Panel b) Top 4%

yi -2.0831 α 1.7331 α 1.8747
(0.0013) (0.0079) (0.0121)

yc 2.1479
(0.0015)

R2 0.9909
Observations 47,705 47,705 47,705

Panel c) Top 3%

yi -2.2150 α 1.9144 α 2.0419
(0.0014) (0.0101) (0.0153)

yc 2.2622
0.0016

R2 0.9933
Observations 35,780 35,780 35,780

Panel b) Top 2%

yi -2.3438 α 2.1671 α 2.2481
(0.0017) (0.0140) (0.0206)

yc 2.3665
(0.0019)

R2 0.9939
Observations 23,854 23,854 23,854

Panel e) Top 1%

yi -2.3778 α 2.4716 α 2.4235
(0.0033) (0.0226) (0.0314)

yc 2.3682
(0.0036)

R2 0.9888
Observations 11,927 11,927 11927

Notes: The table uses the VIIRS data to repeat three regressions which were conducted with the radiance-calibrated
data before: the unrestricted OLS rank regression eq. (E-1) and the restricted regression eq. (E-2) using both the OLS
and the Hill estimator. Standard errors are reported in paretheses. For the OLS restricted rank regression, these are the
asymptotic standard errors computed as (2/N)1/2. The data are a 10% representative sample of all non-zero lights in
the radiance-calibrated data at the pixel level, where each pixel is 30× 30 arc seconds.
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G An analytical top-coding correction

Researchers are often interested in aggregate measures, such as average luminosity or light inequality

in a region or a country. Here we present simple formulas to correct these summary statistics for

top-coding. These corrections work with arbitrary thresholds and Pareto shape parameters.

Mean luminosity: The top-coding corrected mean luminosity µ of a country or region is simply the

weighted average of the bottom and top means µB and µT . If the latter is the mean of a Pareto

distribution starting at yc, we have

µ = ωBµB + (1− ωB)µT = ωBµB + (1− ωB)
α

α− 1
yc (G-1)

where ωB and ωT = 1−ωB are the shares of pixels below and above the threshold. A simple numerical

illustration shows how correcting for top-coding drives up the mean luminosity. If top-coding starts at

yc = 55, affects 5% of the study area of interest, α is 1.5 and mean luminosity in the non-top-coded

pixels is µB = 10, then the corrected mean luminosity is 17.75 rather than 12.25.

Spatial Gini coefficients: The overall Gini coefficient can be written as the weighted sum of the

bottom-share and top-share Ginis (i.e., the within-group Gini) as well as the difference between the top

share of total lights minus the top share of pixels (i.e., the between-group Gini), such that

G = ωBφBGB + ωTφTGT + [φT − ωT ], (G-2)

where the shares of all light accruing to the top and bottom groups are φB = ωBµB/µ and φT =

ωTµT /µ, and GT = 1/(2α− 1). A greater share of top-coded pixels ωT , brighter top-coded pixels φT ,

and a greater spread in the distribution of the top-coded data GT all increase the size of the correction.

The above decomposition of the Gini coefficient can be derived by defining the Gini coefficient over

multiple groups as in Mookherjee and Shorrocks (1982)

G =
1

2N2µ

∑
i

∑
j

|yi − yj | (G-3)

=
1

2N2µ

∑
k

∑
i∈Nk

∑
j∈Nk

|yi − yj |+
∑
i∈Nk

∑
j /∈Nk

|yi − yj |

 (G-4)

=
∑
k

(
Nk

N

)2 µk
µ
Gk +

1

2N2µ

∑
k

∑
i∈Nk

∑
j /∈Nk

|yi − yj | . (G-5)

where GK is the within group Gini coefficient of group k. The second term is a measure of group

overlap including their between group differences.

Perfect separation (no overlap between groups) implies
∑

i∈Nk
∑

j∈Nh |yi − yj | = NkNh |µk − µh|.
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Hence, we can simplify equation eq. (G-5) to

G =
∑
k

(
Nk

N

)2 µk
µ
Gk +

∑
k

∑
h

NkNh

2N2µ
|µk − µh| . (G-6)

With two bottom and top groups k, h ∈ {B, T} (where µT > µB) and some algebra, this becomes

G =

(
NB

N

)2 µB
µ
GB +

(
NT

N

)2 µT
µ
GT +

[(
NT

N

)2 µT
µ
− NT

N

]
. (G-7)

Now define the pixel shares below and above the threshold as ωB and ωT , where ωT = 1−ωB and

the group’s share of all income (light) as φB = ωB
µB
µ and φT = ωT

µT
µ to obtain eq. (G-2) above.
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H Characteristics of the corrected data

In this section we compare the back-on-the-envelop analytical corrections from the previous section

with our corrected data at the pixel level, examine the correlations between our corrected data and the

radiance calibrated data, and discuss the size of the top-coding correction around the world.

Table H-1 reports the mean luminosities and global Gini coefficients before and after the correction

for each satellite, using both the analytic formulas and the data corrected at the pixel level. Our

geo-referenced pixel-level replacement comes close to the analytic solutions but is generally more

conservative (due to the fixed upper bound). Mean luminosity increases on average from 12.7 DN to

15.3–16.6 DN and inequality in lights from 0.47 to 0.56–0.59.

Table H-2 reports mean luminosity and the Gini coefficient of inequality for 2010, using a wider

range of parameters as robustness checks in the analytical correction eq. (G-2). Working with a smaller

(larger) parameter than our benchmark α = 1.5 implied more (less) inequality in the tail of the light

distribution. The corrections are consequently larger (smaller). We can also see that parameter values

of 1.4–1.6 only lead to very small differences in the magnitude of the correction. Also, using a higher α

does not change the magnitude of the correction as much as using a smaller α, as the comparison of

the extreme values of 1.2 and 1.8 shows.

Figure H-1 plots the time series graph of global inequality in lights from 1992 to 2013, both before

and after the top-coding correction based on eq. (G-2). Parameter values of 1.4 and 1.6 serve as

comparison bands for the benchmark case of 1.5. The global distribution of lights became slightly

more unequal over the 1990s, remained flat in the first decade of the new millennium and then became

temporarily more equal in the aftermath of the global financial crises and great recession. However,

this year-to-year variation is completely swamped by the size of the top-coding correction.

Table H-3 provides another comparison check for our pixel-level corrected data. It shows the

correlations between the corrected lights and the radiance-calibrated data for the seven years where

both are available. These figures refer to the whole distribution, not just the top. Remember that in the

correction procedure, we only rely on the ranks for the top, not the precise radiance-calibrated values,

and infer values from the Pareto distribution. It is all the more remarkable that our corrected values

turn out to be strongly correlated to the radiance-calibrated values, with correlations of 0.94–0.96 for all

seven available years.

The global summary statistics presented so far hide a lot of between-country heterogeneity.

Figure H-2 illustrates the size of the correction in different countries with various scatter plots. As

expected, the same characteristics that drive the number of top-coded pixels (see Section 2 in the

paper) turn out to be predictive of the size of the correction in terms of country-wide mean luminosity and

inequality in light. The correction is strongly increasing in GDP per capita, weakly in country size and

moderately in population density. Numerous developing countries experience sizable corrections (such

as Egypt, Paraguay or Mexico). City states, such as Singapore, have large top-coding corrections, as

do smaller countries, like Israel and Estonia. Nevertheless, even large countries like the US experience

a sizable increase in both mean luminosity (plus 7 DN) and the Gini coefficient (plus 14 percentage

points). No single factor captures all the relevant heterogeneity. Instead, the correction is a complex
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function of the spatial equilibrium, that is, the size, number, and brightness of larger cities in each

country.
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Table H-1 – Satellite level statistics of the top-coding correction

Satellite Top Top share (light) Mean luminosity Gini coefficient
share Unadj Adj Unadj Form Pixel Unadj Form Pixel

(pixels) Adj Adj Adj Adj

F101992 0.0381 0.1663 0.3096 13.83 17.81 16.70 0.4390 0.5626 0.5334
F101993 0.0312 0.1568 0.2938 11.96 15.23 14.28 0.4593 0.5737 0.5456
F101994 0.0349 0.1754 0.3207 12.02 15.67 14.60 0.4783 0.5980 0.5684
F121994 0.0420 0.1733 0.3176 14.65 19.04 17.74 0.4353 0.5634 0.5316
F121995 0.0376 0.1733 0.3174 13.09 17.02 15.85 0.4580 0.5813 0.5505
F121996 0.0351 0.1670 0.3068 12.69 16.37 15.25 0.4607 0.5801 0.5494
F121997 0.0394 0.1766 0.3210 13.45 17.57 16.31 0.4540 0.5799 0.5477
F121998 0.0418 0.1816 0.3276 13.89 18.25 16.90 0.4474 0.5774 0.5436
F121999 0.0467 0.1915 0.3412 14.74 19.62 18.08 0.4447 0.5802 0.5449
F141997 0.0316 0.1739 0.3169 10.98 14.29 13.28 0.4876 0.6047 0.5747
F141998 0.0305 0.1680 0.3067 10.94 14.13 13.13 0.4883 0.6023 0.5720
F141999 0.0278 0.1648 0.3011 10.15 13.06 12.13 0.4895 0.6017 0.5714
F142000 0.0318 0.1689 0.3062 11.34 14.67 13.59 0.4852 0.6003 0.5687
F142001 0.0350 0.1817 0.3276 11.64 15.30 14.16 0.4856 0.6069 0.5754
F142002 0.0377 0.1872 0.3375 12.14 16.08 14.90 0.4896 0.6126 0.5818
F142003 0.0382 0.1930 0.3409 11.96 15.96 14.65 0.4928 0.6177 0.5836
F152000 0.0370 0.1685 0.3063 13.25 17.13 15.89 0.4399 0.5647 0.5308
F152001 0.0354 0.1645 0.3011 12.93 16.64 15.46 0.4463 0.5679 0.5351
F152002 0.0372 0.1700 0.3085 13.18 17.08 15.82 0.4465 0.5710 0.5370
F152003 0.0270 0.1582 0.2894 10.28 13.11 12.17 0.4982 0.6055 0.5751
F152004 0.0276 0.1642 0.2979 10.08 12.97 12.00 0.5080 0.6163 0.5853
F152005 0.0279 0.1604 0.2953 10.44 13.36 12.43 0.5115 0.6171 0.5886
F152006 0.0293 0.1666 0.2988 10.56 13.63 12.55 0.5135 0.6217 0.5892
F152007 0.0279 0.1547 0.2844 10.74 13.68 12.69 0.5049 0.6099 0.5795
F162004 0.0340 0.1734 0.3129 11.82 15.38 14.23 0.4641 0.5863 0.5528
F162005 0.0285 0.1642 0.2993 10.44 13.43 12.46 0.4926 0.6040 0.5732
F162006 0.0348 0.1707 0.3041 12.26 15.91 14.61 0.4714 0.5908 0.5546
F162007 0.0403 0.1861 0.3302 13.05 17.28 15.86 0.4624 0.5916 0.5554
F162008 0.0395 0.1832 0.3285 12.97 17.11 15.78 0.4702 0.5961 0.5622
F162009 0.0417 0.1862 0.3356 13.50 17.87 16.54 0.4694 0.5966 0.5644
F182010 0.0591 0.2033 0.3614 17.55 23.73 21.89 0.4258 0.5720 0.5361
F182011 0.0494 0.2020 0.3595 14.78 19.95 18.41 0.4552 0.5936 0.5598
F182012 0.0576 0.2118 0.3734 16.44 22.45 20.68 0.4361 0.5838 0.5481
F182013 0.0578 0.2151 0.3800 16.23 22.28 20.55 0.4389 0.5876 0.5530

Average 0.0374 0.1765 0.3194 12.65 16.56 15.34 0.4691 0.5917 0.5595

Notes: The table reports summary statistics of the global lights data before the top-coding correction and after the
analytical, formula-based correction at the aggregate level (eq. (G-1) and eq. (G-2)) as well as the pixel-level correction
from the paper. Column 1 reports the share of pixels above 55 DN, Column 2 and 3 the share of lights emitted by
these top pixels respectively in the unadjusted and adjusted data set. Columns 4-6 and 7-9 report the mean luminosity
and Gini coefficient, respectively for the unadjusted data, the analytical, formula-based correction and the pixel-level
corrected data. All corrections use α = 1.5 and yc = 55 for the Pareto tail.
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Table H-2 – Correction of global mean and Gini coefficient in 2010, different parameters

Unadj. Pareto parameter α =

1.2 1.3 1.4 1.5 1.6 1.7 1.8

Mean luminosity 17.55 33.49 28.07 25.36 23.73 22.65 21.88 21.30
Spatial Gini 0.4258 0.6954 0.6372 0.5990 0.5720 0.5519 0.5363 0.5240

Notes: The table computes the top-coding corrected mean and Gini coefficient of global inequality in lights for the year
2010 with different α parameters based on eq. (G-1) and eq. (G-2) with yc = 55. The input data are a representative
10% sample of non-zero lights from satellite F182010.

Figure H-1 – Global Gini coefficient in lights before and after the correction
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Notes: Illustration of the global top-coding correction. The figure shows global inequality in lights calculated by eq. (G-2)
using the specified Pareto shape parameters. The input data are a representative 10% sample of non-zero lights. For
years when more than two satellites flew concurrently, the values were averaged.
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Table H-3 – Correlations between corrected data and radiance-calibrated data

Radiance-calibrated

Corrected 1996 1999 2000 2003 2004 2006 2010

1996 0.9546
1999 0.9543
2000 0.9587
2003 0.9454
2004 0.9592
2006 0.9614
2010 0.9530

Notes: The table reports correlations between the corrected lights and the radiance calibrated lights for the seven years
where the radiance-calibrated data are available. The corrections are based on satellites F121996, F141999, F152000,
F152003, F162004, F162006 and F182010.

xxxii



Figure H-2 – Size of the correction and country characteristics

(a) Mean correction vs. GDP per capita
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(b) Gini correction vs. GDP per capita
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(c) Mean correction vs. log area
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(d) Gini correction vs. log area
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(e) Mean correction vs. log density
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(f) Gini correction vs. log density
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Notes: Illustration of how the correction of means and Gini coefficients, based on eq. (G-1) and eq. (G-2), correlate with
log GDP per capita (PPP), log land area, and log population density. The data are a 10% representative sample of all
non-zero lights in satellite F182010. GDP and population data are from the World Development Indicators. For display
purposes, the left panels exclude countries with a correction of mean luminosity larger than 20 DN, these are Singapore,
Hong Kong, Qatar, Bahrain, Kuwait, and the UAE. These countries are included in all panels on the right.
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I Benchmarking exercises

Light-output elasticities at the national level: To validate our corrected data, we estimate light-

output elasticities at the national level in the spirit of Henderson et al. (2012). Henderson et al. (2012)

run fixed effects regressions of log GDP on their measure of log lights per square kilometer. They report

an income elasticity of lights around 0.28. To revisit their results and show that top-coding even plays a

small role at the national level, we construct a matched sample of the stable lights data, our top-coding

corrected lights and the radiance-calibrated data for the seven years they have in common over the

period from 1996 to 2010.

Table H-1 shows that we are able to replicate their result and—even at the highly aggregated country

level—improve marginally with our top-coding corrected data. The corrected data always yield the

highest within-R2, no matter if we use lights per square kilometer or lights per capita. As expected,

the results are not materially different though, so that for an analysis of the national light-output relation

either data can be used without explicitly considering the role of top-coding.

Table H-2 digs deeper and investigates the role of top-coding in rich and densely populated

countries. We define a ‘rich-and-dense’ dummy which is unity for countries that were richer and more

densely populated than the world average in 2000. 32% of our global sample are in this group, including,

Singapore and Kuwait, but also Germany and South Korea. Although the light-output relation is weaker

in these countries as shown in columns (1) and (2), the correction still makes a small difference. We

cannot reject the null hypothesis that in these countries the relationship between lights per km2 and

GDP is zero in the stable lights data, but we are able to reject this hypothesis in the corrected data.

This has little economic implication though; the estimated coefficients are quite close in both data

sources.

Light-output elasticities at the subnational level For this benchmarking exercise, we chose

Germany as an example of a rich and decentralized country. Germany has a widespread geographic

distribution of economic activity and excellent regional accounts. Lessmann et al. (2015) compile GDP

per capita estimates and other statistics at the district level in Germany over the period from 2000

to 2011. To these data, we add our estimates of lights per capita from the stable lights data and

our corrected data. Lessmann et al. (2015) show that the light-output elasticity using the standard

data is not only substantially lower for German districts than at the country level, it even becomes

indistinguishable from zero when population and area are used as controls. While we can mimic these

results for the stable lights data, they are overturned once we use the corrected series. This suggests

that top-coding is one of primary reasons why night lights are worse predictors of output in developed

rather than developing countries.

Table H-3 compares the light output elasticities obtained from cross-sectional regressions using the

stable lights data (columns 1 to 3) and our corrected data (columns 4 to 6). The informational value of

the stable lights variation drops as population, area, an urban dummy, and an former federal republic
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dummy are added to the regression.7 In fact, columns (2) and (3) suggest that there is little value

added in using night lights to predict local output once population and the spatial extent of the region

are accounted for. This picture changes completely with the corrected data in columns (4) to (6). The

sub-national light output elasticity rises substantially and remains highly significant even in the presence

of additional controls. Our corrected data without top-coding correlate much better with local output.

Instead of falling, the cross-sectional light-output elasticity reaches levels comparable to its national

counterpart.

Table H-4 shows that this result carries over to changes in light and output over time albeit with some

qualifications. It reports regression results using panel data from 2000 to 2011. The inclusion of state

and time fixed effects decreases the light-output elasticity to one third of its national counterpart with

the stable lights data. With the corrected data, most specifications recover results comparable to the

cross-sectional estimates provided we use within-state variation, see columns (4) and (5). Only once

we include municipality FEs, both estimates in columns (3) and (6) come very close. This occurs for two

reasons. First, the within-district variation is very small to begin with, making it difficult to empirically

trace out the light-output relationship. Second, since the urban structure of Germany is very mature,

our correction primarily affects the cross-sectional ordering of districts, rather than their ranking over

time. In any case, the correction either substantially improves estimates of the light-output relationship

at the local level or, at the minimum, provides comparable answers.

Figure H-1 plots the average light intensity per square kilometer indicated by both data sources

over population density in German districts in order to better understand the nature of the correction.

Clearly, the two series begin to diverge after a density of about one thousand people per km2. The

stable lights series displays an asymptotic movement towards the top-coding threshold of slightly

above 100 DN whereas the corrected series is approximately linear in population density.8 Another

notable feature is that the three brightest cities according to the stable lights data are all medium-sized

cities with populations (well) below half a million (Herne, Oberhausen and Gelsenkirchen) whereas

the corrected data perfectly identifies the three largest and most populated economic centers as the

brightest (Frankfurt, Munich and Berlin).

In sum, top-coding is a major issue for estimating urban-rural differences, precisely because there

the cross-sectional comparison matters most. Using the German data, we can establish two findings

which are likely to hold in other settings as well. First, top-coding rises with urbanization. Second, the

economic ranking of cities is counter-intuitive in the stable lights data but a sensible ranking emerges

after the correction.

7The former FRG dummy is included, since the East has benefited substantially from public investments in unified
Germany and also adopted energy-saving lights differently from the West.

8Note that when working with square kilometers rather than 30 × 30 arc second pixels, the stable lights series in lights
per square kilometer is not bounded by 63 DN because of the division by area. Most pixels in Germany are smaller than 1
km2 but bigger than 500 m2, hence the theoretical upper bound is slightly above 100 DN, eg. 63 DN/0.5 km2 = 126 DN/km2.
This occurs because the plate carrée projection keeps the area of each pixel constant in degrees not kilometers.
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Table H-1 – Light-output elasticity, country-level, 1996–2010

GDP in 2005 PPPs GDP per capita in 2005 PPPs

(1) (2) (3) (4) (5) (6)
Stable Corrected Radiance Stable Corrected Radiance

Lights per km2 0.275∗∗∗ 0.278∗∗∗ 0.233∗∗∗

(0.067) (0.064) (0.054)

Lights per capita 0.279∗∗∗ 0.280∗∗∗ 0.239∗∗∗

(0.056) (0.055) (0.047)

Within-R2 0.721 0.725 0.712 0.540 0.543 0.526
Observations 1288 1288 1288 1288 1288 1288
Countries 186 186 186 186 186 186

Note(s): The table reports panel FE estimates. Lights per capita and lights per km2 are measured in logs. All columns
include country and time fixed-effects. The specifications are variants of ln yit = β ln lightsit + x′itγ + ci + st + εit
where xit is a vector of controls, ci is a country fixed effect, and st are time dummies. Country-clustered standard errors
in parentheses. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table H-2 – Light-output elasticity with interactions, country-level, 1996–2010

GDP in 2005 PPPs GDP per capita in 2005 PPPs

(1) (2) (3) (4) (5) (6)
Stable lights Corrected Radiance Stable lights Corrected Radiance

Lights per km2 0.280∗∗∗ 0.287∗∗∗ 0.256∗∗∗

(0.066) (0.063) (0.058)

Richdense × Lights per km2 -0.185∗∗∗ -0.165∗∗∗ -0.170∗∗∗

(0.036) (0.034) (0.063)

Lights per capita 0.289∗∗∗ 0.291∗∗∗ 0.256∗∗∗

(0.056) (0.055) (0.052)

Richdense × Lights per capita -0.103∗∗ -0.104∗∗ -0.102
(0.044) (0.041) (0.068)

F -test of sum (p-value) 0.162 0.042 0.061 0.002 0.001 0.004
Within-R2 0.728 0.732 0.717 0.543 0.547 0.529
Observations 1288 1288 1288 1288 1288 1288
Countries 186 186 186 186 186 186

Note(s): The table reports panel FE estimates. Lights per capita and lights per km2 are measured in logs. All columns
include country and time fixed-effects. The specifications are variants of ln yit = β1 ln lightsit+β2(ln lightsit×Di)+
x′itγ + ci + st + εit where Di is a dummy for rich and dense countries, xit is a vector of controls, ci is a country
fixed effect, and st are time dummies. Country-clustered standard errors in parentheses. Significant at: ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table H-3 – Light-output elasticity, Germany at NUTS-3 level, cross-section

Dependent variable: GDP per capita

Saturated data Corrected data
(1) (2) (3) (4) (5) (6)

Lights per capita 0.194∗∗∗ 0.126 0.157∗ 0.206∗∗∗ 0.258∗∗ 0.342∗∗∗

(0.019) (0.094) (0.093) (0.018) (0.101) (0.101)

Population 0.215∗∗∗ 0.266∗∗∗ 0.247∗∗∗ 0.313∗∗∗

(0.041) (0.042) (0.041) (0.042)

Area in km2 -0.132∗∗ -0.122∗∗ -0.037 0.010
(0.062) (0.061) (0.068) (0.068)

Urban -0.158∗∗∗ -0.162∗∗∗

(0.043) (0.042)

Former FRG 0.242∗∗∗ 0.251∗∗∗

(0.022) (0.023)

Adjusted-R2 0.216 0.434 0.526 0.255 0.442 0.540
Regions 412 412 412 412 412 412

Notes: The table reports cross-sectional OLS estimates. All columns include a constant (not shown). Lights per capita,
population and area are all measured in logs. Urban and former FRG are binary variables. The specifications are
variants of ln yi = β ln lightsi + x′iγ + εi, where xit is a vector of controls. The data have been averaged over the
period from 2000 to 2011. Robust standard errors in parentheses. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table H-4 – Light-output elasticity, Germany at NUTS-3 level, 2000–2011

Dependent variable: GDP per capita

Saturated data Corrected data
(1) (2) (3) (4) (5) (6)

Lights per capita 0.101∗ 0.115∗ 0.046∗∗∗ 0.213∗∗∗ 0.234∗∗∗ 0.035∗∗∗

(0.059) (0.060) (0.008) (0.067) (0.068) (0.008)

Population 0.220∗∗∗ 0.270∗∗∗ -0.550∗∗∗ 0.242∗∗∗ 0.294∗∗∗ -0.572∗∗∗

(0.038) (0.039) (0.077) (0.036) (0.039) (0.077)

Area in km2 -0.143∗∗∗ -0.155∗∗∗ -0.062 -0.071
(0.039) (0.040) (0.045) (0.045)

Urban -0.131∗∗∗ -0.137∗∗∗

(0.043) (0.043)

Time FE Yes Yes Yes Yes Yes Yes
State FE Yes Yes No Yes Yes No
Municipality FE No No Yes No No Yes

Within-R2 0.599 0.610 0.794 0.605 0.617 0.793
Observations 4944 4944 4944 4944 4944 4944
Regions 412 412 412 412 412 412

Notes: The table reports panel fixed effects estimates. Lights per capita, population and area are all measured in logs.
Urban is a binary variable. The specifications are variants of ln yit = β ln lightsit + x′itγ + ci + st + εit where xit is a
vector of controls, ci is the state or municipality fixed effect, and st are time dummies. NUTS-3-clustered standard errors
in parentheses. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure H-1 – Light intensity versus population density in German regions
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Notes: Illustration of the value added of the top-coding corrected data for urban economics. The data are cross-sectional
averages of lights per km2 and population density in German NUTS-3 regions over the period from 2000 to 2011.
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J Additional results for African cities

Here we present additional results complementing our application on cities in Sub-Saharan Africa. We

discuss the urban extents and their growth over time, as well as summary statistics by country.

Figure J-1 shows the urban extents of selected cities and compares them with Google Earth images

at the end of the periods we use to delineate the urban extents, i.e., 12/1994 and 12/2013. We can

see that the urban areas detected by our algorithm coincide well with built-up structures. The footprints

using the Abrahams et al. (2018) approach are considerably larger than comparable extents obtained

using DN thresholding (not shown) and correspond more closely to population dispersion on the ground.

Abrahams et al. (2018) report similar results based on a systematic benchmarking exercise of urban

areas derived by this approach to those obtained from a remotely sensed built-up grid.

Table J-1 gives an overview of the countries included in our study. The table reports the names

of the primary city, the number of secondary cities, the annual growth rate of stable lights, and the

annual growth rate of corrected lights. Within all countries the corrections are larger in primary than in

secondary cities. Whether secondary cities grew faster than primary cities over the period from 1992 to

2013 differs across countries, but the top-coding correction often tilts the scale in favor of primary cities.

Table J-2 looks at city growth at the urban fringes, examining whether there are differences between

primary and secondary cities in terms of growth outside the urban fringe. In the main text, we show

that primary cities exhibit stronger intensive growth than secondary cities within the initial 1992 to

1994 boundaries after the top-coding correction. Table J-2 demonstrates that they also grew faster

at the fringes. As expected, the top-coding correction does not have a noticeable impact at the urban

fringe. Expanding cities are typically first adding dim lights as the suburban area expands, which then

intensify as the areas become part of the city proper. Combining this with the finding from the main text

underlines that primate cities are consolidating their dominant position.

Table J-3 examines the how inner-city structures have been changing across different time periods.

As in the main text, we regress either the coefficient of variation or Moran’s I on a linear time trend,

the interaction with primacy and city-level luminosity, but we now split the sample into the first decade

(1992–2002) and second decade (2003–2013). Confirming our previous result, we observe a decrease

in inequality in lights which is highly significant in both periods. The increase in fragmentation (a

decreasing Moran’s I) is a more recent phenomenon. In the first period, increasing fragmentation was

driven by fast-growing cities, as indicated by the negative and highly significant coefficient on log mean

lights. This effect still persists in the second period, that is, once satellite fixed-effects are included, but

is complemented by a negative time trend in Moran’s I (net of growth effects).

Table J-4 explores the impact of the changing structure of African cities documented above on city

growth at the intensive margin. To study this question, we regress luminosity within initial boundaries

of each city on the coefficient of variation or Moran’s I in the previous year, a linear time trend,

an interaction with primacy, and a combination of city and satellite-year fixed effects. The results

are ambiguous. However, the estimated effect sizes are relatively small and lose significance in the

presence of satellite fixed effects. Continued fragmentation could have negative consequences for the

growth of African cities, but more research is necessary to establish the sign and size of this effect.
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Figure J-1 – Urban extents of selected cities in SSA

(a) Lagos, 12/1994 (b) Lagos, 12/2013

(c) Luanda, 12/1994 (d) Luanda, 12/2013

(e) Johannesburg, 12/1994 (f) Johannesburg, 12/2013

Notes: Illustration of the urban extents detection algorithm presented in the text. Note the differences in map scale.
Comparison of 1992-1994 urban footprint with December 1994 and December 2013 Landsat/ Copernicus images
obtained via Google Earth Pro. Google Earth images are used as part of their “fair use” policy. All rights to the underlying
maps belong to Google.
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Table J-1 – Intensive Growth: Annualized growth rates of cities in Africa, 1992–2013

Country Primate city Annual growth (primate) Secondary Annual growth (secondary)

Stable lights Corrected cities Stable lights Corrected

Angola Luanda 0.0282 0.0834 4 0.0497 0.0545
Benin Cotonou 0.0273 0.0301 2 0.0441 0.0437
Botswana Gaborone 0.0328 0.0406 10 0.0453 0.0453
Burkina Faso Ouagadougou 0.0265 0.0325 3 0.0439 0.0443
Burundi Bujumbura 0.0114 0.0123 0
Cameroon Douala 0.0193 0.0250 8 0.0253 0.0264
CAR Bangui -0.0076 -0.0076 0
Chad Ndjamena 0.0300 0.0324 1 0.0294 0.0294
Congo Brazzaville 0.0124 0.0217 2 0.0375 0.0390
Congo (D.R.) Kinshasa 0.0074 0.0181 11 0.0222 0.0229
Cote d’Ivoire Abidjan 0.0128 0.0229 13 0.0376 0.0378
Djibouti Djibouti 0.0205 0.0247 0
Eritrea Asmara 0.0217 0.0221 1 -0.0813 -0.0813
Ethiopia Addis Abbeba 0.0224 0.0245 3 0.0334 0.0333
Gabon Libreville 0.0138 0.0182 4 0.0225 0.0238
Ghana Accra 0.0214 0.0281 18 0.0303 0.0306
Guinea Conakry 0.0263 0.0268 1 -0.0118 -0.0118
Guinea-Bissau Bissau 0.0154 0.0154 0
Kenya Nairobi 0.0188 0.0209 13 0.0115 0.0117
Lesotho Maseru 0.0390 0.0409 0
Madagascar Antananarivo 0.0288 0.0309 5 0.0242 0.0242
Malawi Blantyre 0.0167 0.0206 5 0.0128 0.0133
Mali Bamako 0.0225 0.0298 1 0.0520 0.0520
Mauritania Nouakchott 0.0294 0.0365 2 0.0332 0.0329
Mozambique Maputo 0.0341 0.0475 11 0.0468 0.0472
Namibia Windhoek 0.0130 0.0198 13 0.0211 0.0216
Niger Niamey 0.0188 0.0181 4 0.0304 0.0304
Nigeria Lagos 0.0175 0.0244 59 0.0151 0.0157
Rwanda Kigali 0.0212 0.0218 0
Senegal Dakar 0.0213 0.0329 9 0.0326 0.0334
SierraLeone Freetown 0.0270 0.0270 0
Somalia Mogadishu 0.0635 0.0635 0
South Africa Johannesburg 0.0087 0.0178 204 0.0248 0.0254
Sudan Alkhartum 0.0209 0.0318 21 0.0293 0.0297
Swaziland Mbabane 0.0246 0.0254 7 0.0239 0.0242
Tanzania Daressalaam 0.0230 0.0245 15 0.0178 0.0178
Togo Sokode 0.0200 0.0228 2 0.0129 0.0129
Uganda Kampala 0.0317 0.0366 4 0.0227 0.0227
Zambia Lusaka 0.0185 0.0293 18 0.0288 0.0293
Zimbabwe Harare 0.0011 0.0014 19 0.0023 0.0023

Notes: The table reports lists the name of the primary city as well as the number of secondary cities for each Sub-
Saharan African country, as defined in the text. The annualized intensive growth rate in mean lights is computed from
1992 to 2013, for both the stable lights and the top-coding corrected lights. For primary cities, these growth rates refer
to the primary city of the country. For secondary cities, the reported growth rate is an average of the secondary cities in
the country.
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Table J-2 – Extensive growth regressions for African cities, 1992-2013

Dependent variable: Log mean lights in the fringe

Stable lights data Corrected data
(1) (2) (3) (4) (5) (6)

Linear trend 0.054∗∗∗ 0.051∗∗∗ 0.036∗∗∗ 0.054∗∗∗ 0.051∗∗∗ 0.037∗∗∗

(0.002) (0.002) (0.005) (0.002) (0.002) (0.005)

Primate × linear trend 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗

(0.005) (0.005) (0.005) (0.005)

City FE Yes Yes Yes Yes Yes Yes
Satellite FE No No Yes No No Yes
Observations 7101 7101 7101 7103 7103 7103
Cities 367 367 367 367 367 367

Notes: The table reports the results of city-level panel regressions using the stable lights and top-coding corrected data
at the city fringes, defined as the the area outside the 1992 bounds. The regressions capture growth at the extensive
margin. The specifications are variants of ln lightsijt = β1t+β2(t×Pij)+ cij+ st+ εijt where t is a linear time trend,
Pij is an indicator for primate cities, cij is a city fixed effect and st contains satellite dummies. Standard errors clustered
at the city level are in parentheses. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table J-3 – Trends in fragmentation of African cities, 1992–2013, split sample period

Dependent variable:

Coefficient of Variation Moran’s I
(1) (2) (3) (4) (5) (6)

Panel a) Period from 1992 to 2002

Linear trend -0.380∗∗∗ -0.354∗∗∗ 0.340∗∗∗ 0.007 0.005 0.044
(0.044) (0.046) (0.084) (0.020) (0.021) (0.041)

Log light intensity -16.819∗∗∗ -16.759∗∗∗ -15.957∗∗∗ -2.116∗∗∗ -2.121∗∗∗ -1.487∗∗

(3.162) (3.169) (3.504) (0.580) (0.582) (0.579)

Primate × lin. trend -0.355∗∗ -0.360∗∗ 0.025 0.021
(0.144) (0.145) (0.053) (0.055)

Panel b) Period from 2003 to 2013

Linear trend -0.550∗∗∗ -0.498∗∗∗ -0.623∗∗∗ -0.170∗∗∗ -0.171∗∗∗ -0.572∗∗∗

(0.056) (0.057) (0.053) (0.035) (0.036) (0.051)

Log light intensity 0.224 0.084 -1.350 0.470 0.473 -1.556∗∗∗

(1.033) (1.032) (1.244) (0.511) (0.511) (0.595)

Primate × lin. trend -0.589∗∗∗ -0.601∗∗∗ 0.010 -0.008
(0.128) (0.126) (0.070) (0.067)

City FE Yes Yes Yes Yes Yes Yes
Satellite FE No No Yes No No Yes
Observations (a) 6370 6370 6370 6370 6370 6370
Observations (b) 5310 5310 5310 5310 5310 5310
Cities (both) 531 531 531 531 531 531

Notes: The table reports the results of city-level panel regressions using the top-coding corrected data. The
specifications are variants of Fijt = β1t + β2(t × Pij) + β3 ln lightsijt + cij + st + εijt, where Fijt is either the
coefficient of variation or Moran’s I, t is a linear time trend, Pij is an indicator for primate cities, cij is a city fixed effect
and st contains satellite dummies. Standard errors clustered at the city level are in parentheses. Both measures of
fragmentation have been scaled by 100 for readability. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table J-4 – Impact of fragmentation on city growth, 1992–2013

Dependent variable: Log mean lights

(1) (2) (3) (4) (5) (6)

Linear trend 0.012∗∗∗ 0.012∗∗∗ 0.005∗∗∗ 0.013∗∗∗ 0.013∗∗∗ 0.006∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Primate × linear trend 0.005∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.002) (0.002) (0.002) (0.002)

Lagged CV -0.003∗∗∗ -0.002∗∗ -0.001
(0.001) (0.001) (0.001)

Lagged Moran -0.004∗∗∗ -0.004∗∗∗ -0.001
(0.001) (0.001) (0.001)

City FE Yes Yes Yes Yes Yes Yes
Satellite FE No No Yes No No Yes
Observations 11149 11149 11149 11149 11149 11149
Cities 531 531 531 531 531 531

Notes: The table reports the results of city-level panel regressions using the top-coding corrected data, where either
the lagged coefficient of variation or Moran’s I are used as regressors (Fij,t−1). The specifications are variants of
ln lightsijt = β1t + β2(t × Pij) + Fij,t−1 + cij + st + εijt where t is a linear time trend, Pij is an indicator for
primate cities, cij is a city fixed effect and st contains satellite dummies. Standard errors clustered at the city level are
in parentheses. Both measures of fragmentation have been scaled by 100 for readability. Significant at: ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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