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1 Introduction

Since 2011, the China Europe Railway Express (CER-Express) has been operating as a
new mode of freight transport connecting the People’s Republic of China (PRC) and the
European Union (EU). It has been integrated into the overarching narrative of the Belt and
Road Initiative (BRI) proclaimed by Chinese president Xi Jinping in 20131 and became one
of the most tangible projects within the framework.

Much of the existing research on the economic impact of this program is focusing on trade
creation without considering potential external effects caused by the various projects as-
sociated with the BRI. For instance, Mau and Seuren (2023) find that the CER-Express’s
establishment elevated European companies’ propensity to export to China. Related to their
study, Fang et al. (2021) investigate the effect of CER-Express on local development in EU
regions connected by CER-Express. Their estimated impact on output is insignificant but the
launch can be associated with increasing intermodal transport and, to a lesser extent, addi-
tional employment. These effects can be justified by theoretical arguments based upon the
seminal works of Krugman (1991) and Baldwin and Forslid (2000). The former argues that
declining transportation cost fuels agglomeration, while the latter show how agglomeration
can spur endogenous growth.

Building on those insights and the theoretical extension of the Krugman (1991) model by
Grazi et al. (2007), we are focusing on potential external effects on the environment due
to infrastructure projects. Improvements in infrastructure may raise emissions by attracting
new manufacturing firms with particular interest in accessing the Chinese market. Producers
of more expensive goods may prefer the direct routes over time consuming transport by
ship (supply side argument). It may also be relevant for offshoring firms relying on stable
connections to their Chinese companions (demand side argument). The former channel may
spur local production and emission, while the latter might even reduce pollution in the nodal
regions through the so called pollution haven channel. Due to the better and more stable
access to intermediates from China, incumbents and new entrants may offshore more dirty
production stages. This is particularly relevant for goods sourced from firms in the Chinese
hinterland where wages are still competitive but access to international markets by ship is
also more cumbersome.

Thus, our analysis contributes to the existing empirical literature on the relationship between
transport infrastructure and economic agglomeration (Ahlfeldt and Feddersen 2018; Behrens
et al. 2018; Liu et al. 2022), which can also be linked to increased emission of greenhouse
gasses as proposed by other research (Chen et al. 2018; Cheng 2016; Dong et al. 2020).

These contributions motivate the following hypotheses about the expected treatment effects
associated with the establishment of a connection to the CER-Express system on pollution.

Hypothesis 1 EU regions that serve as nodal points for the CER-Express are expected to
attract more economic activity due to enhanced market access. Economic activity itself may
spur emissions. This argument primarily revolves around the supply side. However, the
demand side could also play an important role in amplifying this effect. Intermodal transport

1https://www.gov.cn/govweb/ldhd/2013-09/08/content_2483565.htm (in Chinese, visited on 10/16/2023)
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is especially relevant for firms that offshore some fragments of their production chain when
time matters. Offshoring opens another channel through which better access to Chinese
suppliers by train may reduce emissions when more pollutant-laden production stages are
offshored.

Hypothesis 2 The exact spatial pattern of agglomeration is ambiguous. Since the nodal
points are often located in rather densely populated areas, the effects might rather be identi-
fied within their proximal vicinity.2

We investigate the hypothesized impact of the newly established train connections on carbon
dioxide (CO2) emissions (Hypothesis 1) taking into consideration the spatial interdependence
between the regions of interest (Hypothesis 2) as outlined in the methodology section.

The remainder of the paper is structured as follows: Section 2 describes the data employed
in our study and its various sources. Section 3 presents the estimation strategy and the
motivation behind the choice of the model used for identification. Section 4 reports the
findings obtained from the empirical analysis. Section 5 concludes.

2 Data

The period of analysis has been restrained to the years between 2003 and 2018, which is
seven years before and seven years after the initial launch of the CER-Express. Thus, the
sample is symmetric around the initial treatment assignment, which corroborates consistency
in difference in differences estimates (Chabé-Ferret 2015).

Data on CO2 emissions is taken from the Emissions Database for Global Atmospheric Re-
search (EDGAR, Crippa et al. 2019). We utilize yearly information provided at a 0.1*0.1 grid
map excluding short-cycle carbon, i.e. biomass and biofuel combustion. Regional emis-
sions are computed by overlaying this with Nomenclature des unités territoriales statistiques
(NUTS, Eurostat 2020) level 3 boundaries from the 2021 iteration of adjustments. Figure 1
illustrates this process, see its description for more technical detail.

We create our primary variable of interest, the CER-Express treatment dummy, from informa-
tion collected by Mau and Seuren (2023). Table 1 replicates the information from their paper.
Similar to them, we account for the date of commencement within the initial period in each
connected region by applying 13−month

12 . In all following periods the dummy takes a value of
unity, irrespective of the number of connections, as we do not possess sufficient quantitative
information on the factual degree of utilization.

Moreover, information extracted from Eurostat include regional gross domestic product (GDP),
primary and secondary sector shares, as well as total gross value added (GVA), size of the
respective region and regional population counts. These are then used to construct the
dependent variable, which is per capita (p.c.) CO2 emissions (in kg), and a number of con-

2Formulation of the second hypothesis is complicated by the fact that the size of regions included in our
analysis varies considerably.
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Figure 1: Exemplary overlay procedure for Hagen municipality (Germany)

(a) kg/m2/s

(b) kg/m2/s

(c) kg/y

CO2 emissions (excluding short cycle) in 2018. The overlaying procedure starts by projecting both layers of
information in a joint coordinate space (1a). It is then determined which areas of the 0.1*0.1 grid maps are
covered by every distinct NUTS 3 entity (1b). Finally, emission intensity in each polygon is multiplied by its size
and values are aggregated to produce a concrete value for each region-year pair in the sample (1c).

trols; namely p.c. regional GDP (in Euros), regional primary and secondary sector shares (in
percent) and population density (in inhabitants per km2).

Table 1: Number of connections
Destination Year Count
Amsterdam 2018 1
Antwerp 2018 1
Bratislava 2017 1
Budapest 2017 2
Budapest 2018 3
Duisburg 2011 1
Duisburg 2013 2
Duisburg 2014 5
Duisburg 2016 6
Duisburg 2017 7
Hamburg 2013 1
Hamburg 2014 2
Hamburg 2015 4
Hamburg 2016 5
Hamburg 2017 7

Destination Year Count
Kouvala 2017 1
Liege 2018 1
Lodz 2013 1
London 2017 1
Lyon 2016 1
Madrid 2014 1
Malaszewice 2011 1
Malaszewice 2014 3
Malaszewice 2015 5
Mannheim 2018 1
Milan 2017 2
Munich 2017 1
Nuremberg 2015 1
Prague 2017 2
Riga 2016 1

Destination Year Count
Riga 2017 2
Riga 2018 3
Rotterdam 2017 1
Tilburg 2016 1
Tilburg 2018 2
Vienna 2018 1
Vuosaari 2018 1
Warsaw 2012 1
Warsaw 2013 2
Warsaw 2014 3
Warsaw 2017 4
Zaragoza 2017 1
Zaragoza 2018 2

Based on Mau and Seuren (2023)

The final data set covers 1117 NUTS 3 regions in 27 EU countries, excluding the United
Kingdom (UK) because of data availability issues related to its withdrawal from the EU. Since
an agreement on statistical cooperation has not yet been signed, both entities use different
primary and secondary sector definitions.3 To allow for the UK’s inclusion, a further robust-
ness check excludes the two sector share variables from the regression. The analysis also

3The former includes mining and quarrying, while the latter does not.
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excludes the EU’s outermost regions4 French Guiana, Guadeloupe, Martinique, Mayotte,
Reunion Island and Saint-Martin (France), Azores and Madeira (Portugal), and the Canary
Islands (Spain). Although officially belonging to the respective countries and thus the EU,
the geographical distance from the mainland hinders interdependence of these areas in ac-
cordance with the channels formulated in the introduction.

Figure 2: Emissions over time

Percentage change of p.c. CO2 emissions (excluding short cycle)
2003 to 2018, logarithmic color scale

Figure 2 gives a detailed picture of all regions covered by our data. The missing values
outside of the UK are due to boundary recoding issues during the period, stemming from
national administrative border adjustments. Regional borders within a country can change
due to various reasons and Eurostat routinely incorporates these updates, resulting in the
loss of 33 observations. Moreover, Figure 2 also traces the region specific change of the
dependent variable over the investigated period.

4https://ec.europa.eu/regional_policy/policy/themes/outermost-regions_en (visited on
10/16/2023)
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A first glimpse at Figure 2 reveals significant variation of p.c. CO2 over time and space.
P.c. rates have been reduced substantially in most parts of France and Scandinavia, but the
picture is more mixed for Germany, Spain and Italy. Also, many Eastern European regions
became more CO2-intensive over time. For the 252 regions with increasing emissions over
time, the average value is 19.79 percent, while the median is 16.58. The remaining 865
territorial units managed to reduce their emissions. The equivalents are 29.82 and 21.5
percent.

Extensive summary statistics can be found in Table A.1. The descriptive statistics reveal that
the primary driver of the variation in all variables other than the treatment dummy is between-
rather than within-region variation. This finding highlights the substantial degree of disparity
between observations in the sample. Additionally, Table A.2 maps correlates between the
variables included in our sample. The statistics do not indicate problematically large values
that may cause multicollinearity issues in multivariate models.

3 Methodology

The channels inferred in Hypotheses 1 and 2 stress the possibility of regional interdepen-
dence through agglomeration.5 The spatial difference in differences (SDID) model described
in Chagas et al. 2016 accounts for this issue by fitting

Yt = (α+Wβ)Dt + (µ+Wν)Xt + ϕ+ θt + Ξt, (1)

where Yt = (Y1t, ..., Ynt)
′ is a nt × 1 vector of p.c. CO2 emissions in

∑n
1 = N regions in

period t. The primary variable of interest D indicates binary treatment. The dummy takes
the value 1 when the respective region is directly connected to the China Europe Railway
Express system and/or indirectly treated through one of the neighboring regions. The direct
effect is captured by parameter α and the indirect effect is measured by β.

The latter effect depends on the distance between the respective region and the potential
access points, which is introduced by the matrix W . This weighting matrix introduces the spa-
tial dependencies between all regions into the model. Regions without direct access to the
China Europe Railway Express system may still be treated through indirect treatment when
surrounding regions have access the railway system. Put differently, all regions somehow
depend on all other regions, but the relevancy is declining in distance. X is a matrix contain-
ing the additional covariates introduced in the data section above, while ϕ and θ represent
region and time fixed effects (FE). Ξ is an error term.

5The primary technical motivation for choosing such a model lies within the implausibility of the stable unit
treatment values assumption (SUTVA, Rubin 1980) in the analyzed setting. The newly commissioned rail con-
nections are expected to not only influence economic activity in the directly connected node regions, but also
other, especially nearby localities.
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The model in equation (1) corresponds to the spatial lag of X model (SLX, Halleck Vega
and Elhorst 2015), which represents the baseline approach to our investigation. It does not
control for spatial autocorrelation or spatial dependency of errors. However, these terms can
be easily incorporated by including

λWYt (1a)
on the right hand side of equation (1) and rewriting

Ξt = ρWut + εt (1b)

Theoretically, both of these adjustments can be performed simultaneously, producing the
general nesting spatial model (GNS). However, Burridge et al. (2016) show that this approach
has significant drawbacks as it has only yet been identified using one specific form of W
and carries the potential of overparameterization. Therefore, the more common approach
is to account separately for either spatial autocorrelation or spatial dependency of errors
generating the Spatial Durbin Model (SDM) or the Spatial Durbin Error Model (SDEM). Put
another way, not all potential features can be accounted for simultaneously but various steps
can be taken to evaluate the alternatives.

As suggested by the literature on model selection within spatial econometrics (e.g. Elhorst
2014), we present the following statistics: Lagrange multiplier (LM) tests can justify the in-
clusion of spatial lag and error terms. However, Halleck Vega and Elhorst (2015) argue that
these tests might be less suitable for settings where the SLX model is the point of departure.
Also, these tests do not allow for discriminating between SDM and SDEM, which are not mu-
tually nested. Therefore, we utilize the Bayesian information criterion (BIC, Schwarz 1978)
as the primary benchmark for selecting the appropriate model.

We also use BIC to choose between different weights matrices W . The perceived sensitivity
of results to the choice of the right weighting matrix is one of the main points of criticism for
spatial models (see Harris et al. 2011). Similar to, for instance, Chagas et al. 2016 we ad-
dress this concern by presenting results obtained from alternative configurations. Since the
theoretical channels outlined above are more suggestive of distance rather than contiguity
as a relevant spill-over channel, we specify them through varying rates of distance based
decay. Row-normalization of weights facilitates the estimated parameters’ interpretation as
average effects among the connected regions.

4 Results

Identification of the CER-Express’s impact in our SDID setup, just like the original DID
methodology, hinges on credible retention of the parallel trends assumption (PTA, Angrist
and Pischke 2009). Since trends after treatment are, by definition, only observed for one
manifestation of D in the control and treatment group respectively, we base our discussion
around visual investigation of trends in the pre-treatment period. Accordingly, Figure 3 tracks
logged p.c. CO2 emissions in both groups from 2003 to 2018.

The divergent pre-trends in the initial periods of our sample raise some concern about the
validity of the PTA. Since this divergence seemingly ceases after 2007, we argue that it does
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Figure 3: Pre- and post-treatment trends

Average logged p.c. CO2 emissions (excluding short cycle), 2003 to 2018

not imply fundamental differences in both groups’ development. Moreover, this potential
source of bias is purged by curtailing the sample as we drop the first four periods in our pre-
ferred specification. Full sample results are reported in Tables A.3 and A.4. Notice that this
piece of graphical evidence does not account for spatial dependency as we were suggesting
in equation (1). All regions are connected to all access points through the spatial lags. Thus,
the control group includes regions that are spatially treated with non-zero weights in W . The
distance based definition of neighborhood utilized in our approach implies that there is no re-
gion that is not treated at all as all regions are modelled to be interconnected to some extent.
Additionally, Figure 3 does not adequately portray the inherent staggered implementation
within the treatment group. The treatment period 2011 only identifies the initial connection
of Duisburg, Germany to the CER-railway system. Additional regions are included in later
years as portrayed in Table 1.

Main Findings

Table 2 presents basic results for the SDM and SDEM models and the four different decay
rates6. The previously discussed tests and criteria used for model selection, both in terms of

6Additional controls displayed in Table A.5 exhibit the expected signs The direct effects estimated in rows one
to four indicate a significantly positive relationship with p.c. GDP and the secondary sector share, while areas
more densely populated and more active in the primary sector showcase significantly lower emission levels. For
the spatially lagged values (rows five to eight) of the same four variables only the secondary sector share does
not exhibit significant point estimates throughout all specifications. For p.c. GDP the sign remains unchanged,
indicating that vicinity to wealthier regions is associated with heightened emissions in any of the N regions. For
population density and the primary sector share signs switch, suggesting that areas with relatively agricultural
and populous neighboring regions are more likely to exhibit more carbon intensive economic activity. Another
pattern that can be identified here, relevant also for the examination of the treatment dummy, is that the effect
size tends to decrease in the exponent of the decay rate.
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spatial component inclusion and distance decay rate used in W , have been displayed in the
bottom panel.

The test statistics suggest using a W with a 1
x2 decay rate as preferred specification. The

simple LM-Tests unequivocally advise for inclusion of either spatial component. The locally
robust LM-Tests allow identifying spatial lag and error dependence. However, each of both
tests is assuming that the respectively other feature is present in the data. Put differently,
we cannot test both features simultaneously. Given the previously described drawbacks
of these tests, we still interpret the frequent rejections of the H0 as sufficient evidence for
considering the SDM and SDEM models as superior to the SLX approach. Computing BIC
for both models leaves us with consistently lower values for the SDM model. The lowest one
is computed in column 3 and values are increasing in both, a larger and a smaller exponent.
This is why we focus on the results obtained from this model setup.

Table 2: Curtailed sample results
Dependent variable Logged p.c. CO2 emissions (kg)

1

x

1

x2
1

x3
1

x4Variable

W decay rate

(1) (2) (3) (4) (5) (6) (7) (8)

Treatment -0.029* -0.027 -0.035** -0.024 -0.033** -0.028 -0.032* -0.031*
(0.017) (0.017) (0.016) (0.018) (0.016) (0.017) (0.017) (0.017)

Treatment (slag) 1.306*** 1.314*** 0.12*** 0.122*** 0.053** 0.045* 0.028 0.018
(0.332) (0.369) (0.041) (0.045) (0.024) (0.027) (0.02) (0.022)

λ 0.902*** 0.511*** 0.306*** 0.245***
(0.014) (0.019) (0.012) (0.01)

ρ 0.926*** 0.529*** 0.308*** 0.244***
(0.014) (0.019) (0.012) (0.01)

R-sqrt 0.977 0.977 0.978 0.977 0.978 0.976 0.978 0.976
TWFE YES YES YES YES YES YES YES YES
Obs. 13404 13404 13404 13404 13404 13404 13404 13404

LM test ✓ ✓ ✓ ✓

for spatial (< 2.2e-16) (< 2.2e-16) (< 2.2e-16) (< 2.2e-16)
lag dep.
Locally robust LM ✗ ✗ ✓ ✓

test for spatial lag (0.3281) (0.112) (0.005223) (0.0001158)
dep. sub spatial err.
LM test ✓ ✓ ✓ ✓

for spatial (< 2.2e-16) (< 2.2e-16) (< 2.2e-16) (< 2.2e-16)
err. dep.
Locally robust LM ✓ ✓ ✗ ✗

test for spatial err. (< 2.2e-16) (1.336e-08) (0.7608) (0.05154)
dep. sub spatial lag
BIC -13854.8 75445.75 -14059.38 75256.67 -14018.03 75330.21 -13955.26 75397.85

Note All specifications use row standardized weight matrices. The term slag denotes spatially lagged variables.
Significance levels as indicated through p-values are ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. ✓ indicates rejection of the
H0 at the 5% level in favor of spatial component inclusion, ✗ failure to do so. P-values are added in parentheses.

Evaluating the CER-Express treatment dummy, the direct impact estimated in row one is
always negative and significant for the SDM models, varying between approximately -2.9
percent in column 1 and -3.5 percent in column 3. For the SDEM models only the estimate in
column 8 is significant at the 10 percent level and quantitatively similar to SDM alternatives.
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For the lagged treatment, the impact, as for the controls, decreases with the exponent in
the decay rate and is no longer significant for the models in columns 7 and 8. In column
3 this entails a significant average increase of approximately 12.7 percent. For the next
best specification in column 5 it is ≈5.4 percent. Spatial components included (λ and ρ) are
consistently positive and strongly significant in all models. This serves as further affirmation
for their inclusion.

Substantially, this result can be interpreted as meaningful redeployment of carbon intensive
economic activity (Hypothesis 1). Within the connected node regions, more pollution inten-
sive businesses are driven out by other, potentially service-oriented entities. They relocate
to nearby areas, whose vicinity to the node regions presents an incentive for additional in-
dustries to shift their production here (Hypothesis 2).

Sample adjustments

Although effect size deviates to some extent from previously identified values for the un-
curtailed sample also including years before 2007 (Table A.4), the results are qualitatively
similar. For the preferred iteration, which according to Table A.3 is still the SDM model with
a W -Matrix characterized through a 1

x2 decay rate, it is retained at the 1 percent level for
the direct and lagged treatment effect. The associated point estimates at ≈-8.2 and ≈33.1
percent are substantially larger than their counterparts identified in Table 2. However, given
the lack of parallelism in the uncurtailed sample’s initial periods, we are less convinced about
these results unbiasedness.

Also estimates obtained from an expanded sample model including regions in the UK, which,
consequentially, includes another region into the treatment group, while dropping primary
and secondary sector shares from X in equation (1), do not allow for qualitatively essentially
different conclusions. While test outcomes presented in Table A.6 advice for use of the same
SDM specification as before, treatment effects presented in Table A.7 are slightly inflated
from the models excluding the UK. However, it could be argued that these differences are
driven by the remainder of regressors picking up the now unobserved structural information.

Ultimately, adjusting the analysed sample in terms of either T , N or X does serve to uphold
the initially drawn conclusions. Quantitatively though, point estimates are arguably exposed
to more sources of bias in Tables A.4 and A.7, which is why alternatives in Table 2 are
considered more reliable.

Mechanisms

As we have established a measurable relationship between the roll-out of CER-Express
and spatial patterns of human-induced CO2 emissions, the underlying mechanisms deserve
some elucidation.

The most straightforward way to do this is an investigation of the structural characteristics of
the affected regions. This concerns primarily the trajectory of the secondary sector, which,
presumably, is responsible for the detected environmental burden associated with CER-
Express. Since the originally facilitated share variable is bounded, linear estimation might
fit values outside of its support (Migliorati et al. 2018). Therefore, we replicate the previous
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steps of testing (see Table A.8) and estimation (see Table 37) for logged values of secondary
sector output. The preferred model in column 3 identifies a pattern similar to the previously
discussed coefficients of Table 2. Manufacturing output is decreasing in the nodal regions,
while it increases in their vicinity, although the latter effect is only significant at the ten percent
level and measurably smaller than the increase in CO2 emissions.

Table 3: Curtailed sample results, secondary sector output
Dependent variable Logged Secondary sector output (1000 Euros)

1

x

1

x2
1

x3
1

x4Variable
W decay rate

(1) (2) (3) (4) (5) (6) (7) (8)

Treatment -0.03** -0.031*** -0.027** -0.022* -0.029*** -0.028** -0.03*** -0.03**
(0.012) (0.011) (0.011) (0.012) (0.011) (0.012) (0.011) (0.012)

Treatment (slag) -0.198 -0.196 0.046* 0.023 0.022 0.005 0.013 -0.001
(0.229) (0.253) (0.027) (0.031) (0.016) (0.019) (0.013) (0.016)

λ 0.896*** 0.783*** 0.518*** 0.425***
(0.006) (0.01) (0.01) (0.009)

ρ 0.978*** 0.826*** 0.521*** 0.425***
(0.004) (0.012) (0.01) (0.009)

R-sqrt 0.996 0.996 0.997 0.996 0.997 0.996 0.997 0.996
TWFE YES YES YES YES YES YES YES YES
Obs. 13404 13404 13404 13404 13404 13404 13404 13404

Note All specifications use row standardized weight matrices. The term slag denotes spatially lagged
variables. Significance levels as indicated through p-values are ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table 4: Curtailed sample results, GDP p.c.
Dependent variable Logged GDP p.c. (Euros)

1

x

1

x2
1

x3
1

x4Variable
W decay rate

(1) (2) (3) (4) (5) (6) (7) (8)

Treatment 0.037*** 0.041*** 0.021*** 0.021*** 0.021*** 0.02** 0.023*** 0.019**
(0.009) (0.009) (0.007) (0.008) (0.006) (0.009) (0.007) (0.009)

Treatment (slag) 2.209*** 2.107*** 0.045*** 0.039* 0.013 0.017 0.008 0.008
(0.176) (0.199) (0.017) (0.02) (0.009) (0.013) (0.008) (0.012)

λ 0.992*** 0.994*** 0.825*** 0.738***
(0.001) (0.001) (0.005) (0.005)

ρ 0.993*** 0.994*** 0.835*** 0.746***
(0.001) (0.001) (0.005) (0.005)

R-sqrt 0.994 0.991 0.996 0.99 0.997 0.99 0.997 0.99
TWFE YES YES YES YES YES YES YES YES
Obs. 13404 13404 13404 13404 13404 13404 13404 13404

Note All specifications use row standardized weight matrices. The term slag denotes spatially lagged
variables. Significance levels as indicated through p-values are ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Trying to answer the question if and how this result translates into aggregate growth dynam-
7Additional controls displayed in Table A.9
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ics, Table 48 presents results for p.c. GDP as the dependent variable. Despite the previously
identified increase in emissions p.c. and secondary sector output, no identifiable effect can
be discerned for the preferred model specification (for test outcomes see Table A.10). For
the nodal regions however, the effect is positive (≈2.3 percent) and strongly significant.

Dynamics

Given the dynamic nature of CER-Express’s roll-out, one reasonable assumption is that effect
size varies over time. More precisely, it can be expected that, as the number of trips and
average facilitation increases, the impact on regional economic activity grows, causing CO2
emissions to rise.

Interacting both treatment indicators with the matrix of time dummies θt produces the modi-
fied regression equation for our preferred SDM

Yt = (αt +Wβt)Dtθt + λWYt + (µ+Wν)Xt + ϕ+ θt + Ξt, (2)

The new sets of parameters αt and βt, which are accordingly estimated as the average
yearly direct and spatially lagged treatment effects, have been plotted in Figure 4. The graph
reveals several interesting findings refining previous results

Figure 4: Yearly reatment effects

Point estimates (solid line) and 95% confidence intervals (shaded area) for the direct (red) and spatially lagged
(blue) treatment. Adjustments corresponding to the model represented in column (3) of Table 2

8Additional controls displayed in Table A.11
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A common feature, which is however much more pronounced for the spatially lagged effects,
is that precision, depicted here by the width of the confidence band, improves over time. This
is most likely caused by the increase in observations with D = 1 in later periods.

For the direct treatment, i.e. the effects observed within the nodal points listed in Table 1,
yearly estimates are in fact non-discernible form zero at the 5-percent level. This undermines
credibility of the previously identified negative average effect. Potentially, this mismatch is
driven by excessive weights on some of the periods with slightly significant estimates as
discussed by Goodman-Bacon (2021).

For the spatially lagged treatment, yearly effects only become significant and positive starting
from 2016. This realization is in line with the continued growth of CER-Express. Moreover,
this finding also aligns with recent research identifying the lagged realization of infrastructural
policies’ outcomes (Lindgren et al. 2021).

Placebo exercise

To further scrutinise previous results, a placebo exercise randomly assigns treatment to an
equally large group of regions from the original control group following an allocation pattern
identical to the one depicted in Table 1.

Figure 5: Placebo exercise results

(a) Direct (b) Spatially lagged
Estimate distribution for 10,000 iterations of randomly assigned treatment. Treatment assigned following
the same allocation pattern depicted in Table 1 and using the same specification as in column (3) of Table 2. The
density function maps over all estimates, while estimates are grouped by significance at the 5% level (red above,
blue below). Green lines shows originally estimated coefficients.

The resulting patterns of both distributions are centered around zero, as their mean clearly
deviates from coefficients identified in column (3) of Table 2. Also, most placebo assignments
produce insignificant point estimates.

For Figures 5a and 5b respectively, 485 and 33 significant placebo coefficients are located
within a one percent window around the actually identified estimates. This supports the
original expectation that there is no systematically unobserved information driving the effect,
especially for the spatially lagged treatment.
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5 Conclusion

Reflecting on our findings, one can reasonably attest that there is sufficient evidence for
an identifiable environmental impact of the transport embodied within CER-Express. These
potentially detrimental effects should be figured in when considering political decisions on
further and increased local participation. However, it can also be concluded that there is
substantial room for trade-offs, both between those regions prompting participation decisions
and its indirectly affected neighbors, as well as between economic and environmental goals.

Projecting the potential future trajectory of the identified environmental repercussions, num-
bers published at the height of the Covid-19 pandemic are indicating that, in terms of uti-
lization, CER-Express seemingly profited from increased rates cited for competing modes
of transport, especially maritime freight9. Reportedly, the number of trips between the PRC
and the EU grew from 8225 in 201910 to 12406 in 202011 and 15000 in 202112, suggesting
ample room for continued growth.

More recently though, a number of challenges are threatening to derail the project, ren-
dering its continuation infeasible. These include the potential unreliability of routes running
through Russian territory following the country’s war with Ukraine and ensuing sanctions,
potential supply chain issues, and, from a long term perspective, the looming scenario of de-
globalistaion induced by altercations between China on the one hand and the United States
of America (USA) and its allies on the other. However, despite these challenges, most re-
cent numbers published for the year 2022 indicate a substantial degree of robustness in
operations (16000 trips13).
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Appendix

Table A.1: Summary Statistics
Variable Unit Comparison Mean sd min max
CO2 emissions kg Overall 8668.7995 11261.43 1157.13 232332.39
p.c. Between 11002.20 1227.21 197368.96

Within 2423.42 -34856.55 55991.33
GDP p.c. Euros Overall 24373.7385 14048.03 1237.18 183778.44

Between 13592.29 2653.23 118400.94
Within 3571.01 -17517.68 89751.23

Density Inhabitans Overall 404.0980 1061.03 1.81 21411.24
per km2 Between 1060.64 1.85 21008.27

Within 42.14 -1087.51 1666.13
Primary % Overall 3.5923 3.91 -3.61 44.01
sector share Between 3.74 0.00 25.75

Within 1.14 -8.39 24.17
Secondary % Overall 30.1275 10.35 3.39 78.51
sector share Between 10.04 5.63 73.27

Within 2.53 11.33 51.98
Treatment Dummy Overall 0.0035 0.06 0.00 1.00

Between 0.03 0.00 0.50
Within 0.05 -0.50 0.94
N = 17872 n = 1117 T-bar = 16

Note The displayed negative minimum value of the overall primary sector share stems from the
Swedish Kronoberg County, which, alongside the adjacent Jönköping County, recorded a
negative gross value added in agricultural production for 2005. This indicates that for this year
sales were less valuable than bought-in goods and services (Silver and Golder 1981).

Table A.2: Correlation matrix
CO2 emissions p.c. GDP p.c. Density Primary sector share Secondary sector share Treatment

CO2 emissions p.c. 1.0000 0.0220 -0.0509 -0.0350 0.2116 0.0046
GDP p.c. 0.0220 1.0000 0.3605 -0.5299 -0.0498 0.0503
Density -0.0509 0.3605 1.0000 -0.2552 -0.2149 0.0808
Primary sector share -0.0350 -0.5299 -0.2552 1.0000 -0.0390 -0.0286
Secondary sector share 0.2116 -0.0498 -0.2149 -0.0390 1.0000 -0.0505
Treatment 0.0046 0.0503 0.0808 -0.0286 -0.0505 1.0000
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Table A.3: Spatial dependency testing outcomes, uncurtailed sample

1

x

1

x2
1

x3
1

x4

LM test for ✓ ✓ ✓ ✓

spatial lag dependence (< 2.2e-16) (< 2.2e-16) (< 2.2e-16) (< 2.2e-16)
Locally robust LM test for ✗ ✓ ✗ ✗

spatial lag dependence sub spatial error (0.1409) (0.01885) (0.251) (0.1219)
LM test for ✓ ✓ ✓ ✓

spatial error dependence (< 2.2e-16) (< 2.2e-16) (< 2.2e-16) (< 2.2e-16)
Locally robust LM test for ✓ ✓ ✗ ✗

spatial error dependence sub spatial lag (< 2.2e-16) (3.085e-10) (0.1112) (0.5576)
BIC SDM -13828.35 -14119.26 -14105.99 -14023.1
BIC SDEM 110400.5 110105.2 110156.1 110244.9

Note ✓ indicates rejection of the H0 at the 5% level in favor of spatial component inclusion, ✗ failure
to do so. P-values are added in parentheses.

Table A.4: Uncurtailed sample results
Dependent variable Logged p.c. CO2 emissions (kg)

1

x

1

x2
1

x3
1

x4Variable
W decay rate

(1) (2) (3) (4) (5) (6) (7) (8)
Treatment -0.075561*** -0.07071*** -0.085632*** -0.053729*** -0.081296*** -0.063108*** -0.078613*** -0.068103***

(0.019178) (0.019248) (0.018939) (0.02009) (0.018935) (0.019999) (0.018984) (0.019825)
Treatment (slag) 2.392641*** 2.524796*** 0.285932*** 0.325097*** 0.138167*** 0.133606*** 0.094013*** 0.082138***

(0.383295) (0.425659) (0.047501) (0.051807) (0.027871) (0.030444) (0.023514) (0.025303)
ln(GDP p.c.) 0.147251*** 0.141052*** 0.121875*** 0.122159*** 0.088414*** 0.108799*** 0.088735*** 0.113129***

(0.016341) (0.016951) (0.018642) (0.018073) (0.019579) (0.01835) (0.019556) (0.018173)
ln(Density) -1.042822*** -1.051717*** -0.971371*** -0.966645*** -0.937699*** -0.936759*** -0.924913*** -0.926627***

(0.035957) (0.036545) (0.038254) (0.03642) (0.039218) (0.036699) (0.039286) (0.036775)
Primary sector share -0.002914** -0.003638*** -0.005638*** -0.004811*** -0.004917*** -0.003407*** -0.003771*** -0.002311*

(0.001165) (0.001186) (0.001243) (0.001216) (0.001266) (0.001206) (0.001252) (0.001185)
Secondary sector share 0.002757*** 0.002693*** 0.002748*** 0.00294*** 0.003356*** 0.003469*** 0.003569***

(0.000464) (0.000467) (0.000473) (0.00046) (0.000478) (0.000461) (0.000477) (0.00046)
ln(GDP p.c.) (slag) 0.565894*** 1.007001*** 0.180127*** 0.381622*** 0.19626*** 0.277641*** 0.193379*** 0.246148***

(0.091864) (0.110376) (0.032954) (0.036964) (0.024055) (0.024158) (0.021863) (0.021158)
ln(Density) (slag) 1.858943*** 1.384948*** 0.532578*** 0.013349 0.314227*** 0.030125 0.249196*** 0.037948

(0.212411) (0.276771) (0.077878) (0.087678) (0.05436) (0.05439) (0.048379) (0.04701)
Primary sector share (slag) 0.064599*** 0.092515*** 0.027342*** 0.036368*** 0.019643*** 0.021976*** 0.016756*** 0.018053***

(0.006587) (0.008333) (0.002513) (0.003095) (0.001816) (0.001938) (0.00161) (0.001633)
Secondary sector share (slag) -0.003366 0.002281 4.2e-05 0.001556 7.5e-05 0.000998 -9.3e-05 0.000658

(0.003747) (0.004661) (0.001124) (0.000736) (0.000784) (0.000636) (0.000652)
λ 0.903648*** 0.489851*** 0.295385*** 0.233044***

(0.013832) (0.016861) (0.010626) (0.008866)
ρ 0.919592*** 0.510796*** 0.298006*** 0.233433***

(0.013555) (0.016724) (0.010652) (0.008891)
R-sqrt 0.9649 0.9639 0.9658 0.9637 0.9658 0.9637 0.9656 0.9637
TWFE YES YES YES YES YES YES YES YES
Obs. 17872 17872 17872 17872 17872 17872 17872 17872
Note All specifications use row standardized weight matrices. The term slag denotes spatially lagged variables. Significance levels as indicated
through p-values are ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.5: Curtailed sample results (cont.)
Dependent variable Logged p.c. CO2 emissions (kg)

1

x

1

x2
1

x3
1

x4Variable
W decay rate

(1) (2) (3) (4) (5) (6) (7) (8)
ln(GDP p.c.) 0.206075*** 0.190592*** 0.146875*** 0.150454*** 0.114297*** 0.144698*** 0.125487*** 0.160772***

(0.0201) (0.020704) (0.022386) (0.021589) (0.023055) (0.021572) (0.022775) (0.021159)
ln(Density) -1.242377*** -1.256577*** -1.228574*** -1.227452*** -1.227026*** -1.205845*** -1.217567*** -1.193098***

(0.043312) (0.043993) (0.046006) (0.043708) (0.047048) (0.043867) (0.047044) (0.043854)
Primary sector share -0.002398* -0.002524* -0.003604** -0.003405** -0.003581** -0.002905** -0.003378** -0.002628*

(0.00145) (0.00146) (0.001498) (0.001462) (0.001513) (0.001458) (0.001504) (0.001444)
Secondary sector share 0.001021** 0.001136** 0.001551*** 0.001918*** 0.002326*** 0.002472*** 0.00262*** 0.002644***

(0.000501) (0.000505) (0.000516) (5e-04) (0.00052) (5e-04) (0.000517) (0.000497)
ln(GDP p.c.) (slag) 0.583395*** 1.227689*** 0.256318*** 0.557665*** 0.279974*** 0.400569*** 0.265463*** 0.344715***

(0.10728) (0.131554) (0.040022) (0.045492) (0.029031) (0.029253) (0.026022) (0.025284)
ln(Density) (slag) 1.658691*** 1.056118*** 0.797692*** 0.30172*** 0.586196*** 0.255697*** 0.512683*** 0.243838***

(0.236056) (0.310725) (0.088179) (0.100318) (0.06334) (0.062904) (0.056852) (0.054749)
Primary sector share (slag) 0.041411*** 0.057536*** 0.016966*** 0.025529*** 0.01211*** 0.01399*** 0.010362*** 0.011228***

(0.012187) (0.01562) (0.004015) (0.005028) (0.00264) (0.002894) (0.002242) (0.002332)
Secondary sector share (slag) 0.00996** 0.015261*** 0.001845 0.002354 -0.000121 7.7e-05 -0.000805 -0.000629

(0.004461) (0.005515) (0.001259) (0.001492) (0.000812) (0.000872) (0.000698) (0.000721)
R-sqrt 0.9773 0.9766 0.9779 0.9765 0.9779 0.9765 0.9777 0.9764
TWFE YES YES YES YES YES YES YES YES
Obs. 13404 13404 13404 13404 13404 13404 13404 13404
Note All specifications use row standardized weight matrices. The term slag denotes spatially lagged variables. Significance levels as indicated
through p-values are ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A.6: Spatial dependency testing outcomes, curtailed sample including UK

1

x

1

x2
1

x3
1

x4

LM test for ✓ ✓ ✓ ✓

spatial lag dependence (< 2.2e-16) (< 2.2e-16) (< 2.2e-16) (< 2.2e-16)
Locally robust LM test for ✗ ✗ ✗ ✓

spatial lag dependence sub spatial error (0.09307) (0.1554) (0.4406) (0.01966)
LM test for ✓ ✓ ✓ ✓

spatial error dependence (< 2.2e-16) (< 2.2e-16) (< 2.2e-16) (< 2.2e-16)
Locally robust LM test for ✓ ✓ ✗ ✗

spatial error dependence sub spatial lag (< 2.2e-16) (1.091e-07) (0.2181) (0.3943)
BIC SDM -14158.45 -14449.12 -14280.7 -14172.82
BIC SDEM 90952.32 90650.54 90844.56 90958.98

Note ✓ indicates rejection of the H0 at the 5% level in favor of spatial component inclusion, ✗ failure
to do so. P-values are added in parentheses.
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Table A.7: Curtailed sample results including UK
Dependent variable Logged p.c. CO2 emissions (kg)

1

x

1

x2
1

x3
1

x4Variable
W decay rate

(1) (2) (3) (4) (5) (6) (7) (8)
Treatment -0.038223** -0.033894** -0.045575*** -0.036468** -0.04025** -0.035552* -0.038172** -0.036749**

(0.017188) (0.017249) (0.016866) (0.018197) (0.016964) (0.018193) (0.017041) (0.018007)
Treatment (slag) 2.314109*** 2.255325*** 0.162394*** 0.124738*** 0.081992*** 0.055359* 0.051214** 0.029109

(0.358591) (0.40343) (0.043263) (0.047999) (0.02539) (0.028247) (0.021481) (0.023472)
ln(GDP p.c.) 0.243871*** 0.217278*** 0.18236*** 0.174204*** 0.147001*** 0.165967*** 0.1528*** 0.176584***

(0.017179) (0.017956) (0.019029) (0.018306) (0.019613) (0.018196) (0.019372) (0.017845)
ln(Density) -1.167864*** -1.189619*** -1.178118*** -1.212558*** -1.226482*** -1.241348*** -1.250164*** -1.255552***

(0.043217) (0.044361) (0.04625) (0.043936) (0.047673) (0.043921) (0.04765) (0.043855)
ln(GDP p.c.) (slag) 0.073241 0.680292*** 0.061056* 0.348664*** 0.124944*** 0.234689*** 0.126528*** 0.197499***

(0.073126) (0.096642) (0.031263) (0.038102) (0.023976) (0.024486) (0.021842) (0.021244)
ln(Density) (slag) 0.756854*** -0.305421 0.550087*** -0.103845 0.368092*** -0.052823 0.32372*** -0.010878

(0.17408) (0.251194) (0.079556) (0.095629) (0.061063) (0.060122) (0.055745) (0.052859)
λ 0.958077*** 0.587178*** 0.344476*** 0.270044***

(0.007327) (0.016377) (0.011014) (0.009307)
ρ 0.961587*** 0.59819*** 0.346262*** 0.270184***

(0.007542) (0.016327) (0.011024) (0.009321)
R-sqrt 0.9754 0.9739 0.9762 0.9739 0.976 0.974 0.9757 0.9739
TWFE YES YES YES YES YES YES YES YES
Obs. 15444 15444 15444 15444 15444 15444 15444 15444
Note All specifications use row standardized weight matrices. The term slag denotes spatially lagged variables. Significance levels as indicated
through p-values are ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A.8: Spatial dependency testing outcomes, curtailed sample, secondary sector output

1

x

1

x2
1

x3
1

x4

LM test for ✓ ✓ ✓ ✓

spatial lag dependence (< 2.2e-16) (< 2.2e-16) (< 2.2e-16) (< 2.2e-16)
Locally robust LM test for ✗ ✓ ✓ ✓

spatial lag dependence sub spatial error (0.6425) (0.01683) (2.057e-10) (7.112e-15)
LM test for ✓ ✓ ✓ ✓

spatial error dependence (< 2.2e-16) (< 2.2e-16) (< 2.2e-16) (< 2.2e-16)
Locally robust LM test for ✓ ✓ ✗ ✓

spatial error dependence sub spatial lag (< 2.2e-16) (< 2.2e-16) (0.1178) (0.01246)
BIC SDM -23718.17 -25463.37 -25462.87 -25225.03
BIC SDEM 65163.47 63739.48 63907.29 64158.25

Note ✓ indicates rejection of the H0 at the 5% level in favor of spatial component inclusion, ✗ failure
to do so. P-values are added in parentheses.
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Table A.9: Curtailed sample results, secondary sector output (cont.)
Dependent variable Logged Secondary sector output (1000 Euros)

1

x

1

x2
1

x3
1

x4Variable
W decay rate

(1) (2) (3) (4) (5) (6) (7) (8)
ln(GDP p.c.) 1.438691*** 1.454884*** 1.56034*** 1.556312*** 1.587329*** 1.571526*** 1.586689*** 1.567751***

(0.012546) (0.012619) (0.012593) (0.011786) (0.012661) (0.011558) (0.012536) (0.011358)
ln(Density) 1.015987*** 0.993606*** 1.089481*** 1.159804*** 1.104656*** 1.190267*** 1.112396*** 1.200394***

(0.029957) (0.029952) (0.029574) (0.028024) (0.030068) (0.027992) (0.030272) (0.027949)
Primary sector share -0.010389*** -0.011032*** -0.01276*** -0.012348*** -0.012941*** -0.011989*** -0.012533*** -0.011469***

(0.000997) (0.000987) (0.000954) (0.00092) (0.000956) (0.00092) (0.000956) (0.00092)
ln(GDP p.c.) (slag) -1.253647*** -0.002425 -1.318022*** -0.237292*** -0.913224*** -0.162195*** -0.766648*** -0.139778***

(0.058783) (0.072777) (0.025925) (0.031533) (0.021559) (0.017943) (0.019506) (0.014817)
ln(Density) (slag) 1.030805*** 3.053548*** -0.520465*** 0.11052 -0.333866*** 0.142017*** -0.235439*** 0.188125***

(0.153423) (0.201542) (0.057046) (0.073796) (0.041471) (0.042652) (0.037431) (0.036189)
Primary sector share (slag) 0.046754*** 0.060891*** 0.021096*** 0.023236*** 0.014064*** 0.01083*** 0.011742*** 0.007461***

(0.008403) (0.010764) (0.002565) (0.00381) (0.001678) (0.002052) (0.001435) (0.001601)
R-sqrt 0.9961 0.9957 0.9966 0.9957 0.9966 0.9957 0.9966 0.9957
TWFE YES YES YES YES YES YES YES YES
Obs. 13404 13404 13404 13404 13404 13404 13404 13404
Note All specifications use row standardized weight matrices. The term slag denotes spatially lagged variables. Significance levels as indicated
through p-values are ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A.10: Spatial dependency testing outcomes, curtailed sample, GDP p.c.

1

x

1

x2
1

x3
1

x4

LM test for ✓ ✓ ✓ ✓

spatial lag dependence (< 2.2e-16) (< 2.2e-16) (< 2.2e-16) (< 2.2e-16)
Locally robust LM test for ✓ ✓ ✓ ✓

spatial lag dependence sub spatial error (< 2.2e-16) (0.02146) (< 2.2e-16) (< 2.2e-16)
LM test for ✓ ✓ ✓ ✓

spatial error dependence (< 2.2e-16) (< 2.2e-16) (< 2.2e-16) (< 2.2e-16)
Locally robust LM test for ✓ ✓ ✗ ✓

spatial error dependence sub spatial lag (< 2.2e-16) (< 2.2e-16) (0.07417) (0.009465)
BIC SDM -30341.07 -36780.49 -37238.26 -36430.7
BIC SDEM 58982.18 52642.01 52193.73 53015.74

Note ✓ indicates rejection of the H0 at the 5% level in favor of spatial component inclusion, ✗ failure
to do so. P-values are added in parentheses.

Table A.11: Curtailed sample results, GDP p.c. (cont.)
Dependent variable Logged GDP p.c. (Euros)

1

x

1

x2
1

x3
1

x4Variable
W decay rate

(1) (2) (3) (4) (5) (6) (7) (8)
ln(Density) -0.658102*** -0.617591*** -0.582523*** -0.59779*** -0.557544*** -0.542618*** -0.558102*** -0.548718***

(0.022612) (0.023085) (0.018275) (0.017983) (0.017577) (0.01909) (0.017874) (0.019616)
Primary sector share -0.009711*** -0.008333*** -0.004738*** -0.006569*** -0.004199*** -0.006305*** -0.004661*** -0.007312***

(0.000778) (0.000786) (0.000616) (0.000603) (0.000585) (0.000598) (0.000591) (0.000623)
Secondary sector share 0.008836*** 0.009356*** 0.010981*** 0.010737*** 0.011437*** 0.010851*** 0.01159*** 0.011041***

(0.000245) (0.000246) (0.000187) (0.00019) (0.000174) (0.000197) (0.000176) (0.000205)
ln(Density) (slag) -0.249936** -1.405925*** 0.460763*** -0.082365* 0.443031*** 0.078865** 0.399259*** 0.049074*

(0.124737) (0.166571) (0.03517) (0.048549) (0.023605) (0.030661) (0.021514) (0.02683)
Primary sector share (slag) -0.123588*** -0.2079*** -0.017572*** -0.03702*** -0.006861*** -0.012663*** -0.006476*** -0.011523***

(0.006338) (0.008157) (0.001572) (0.002664) (0.000995) (0.001531) (0.000865) (0.001194)
Secondary sector share (slag) 0.025069*** 0.039951*** -0.011534*** -0.005377*** -0.010094*** -0.002513*** -0.008998*** -0.00165***

(0.001846) (0.002416) (0.000453) (0.000685) (0.000282) (0.000414) (0.000248) (0.000345)
R-sqrt 0.9935 0.9915 0.9963 0.9905 0.9967 0.9902 0.9966 0.9903
TWFE YES YES YES YES YES YES YES YES
Obs. 13404 13404 13404 13404 13404 13404 13404 13404
Note All specifications use row standardized weight matrices. The term slag denotes spatially lagged variables. Significance levels as indicated
through p-values are ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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